These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31480579)
1. Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications. Kazimierczak P; Palka K; Przekora A Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480579 [TBL] [Abstract][Full Text] [Related]
2. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration. Trzaskowska M; Vivcharenko V; Franus W; Goryczka T; Barylski A; Przekora A Molecules; 2023 Jul; 28(13):. PubMed ID: 37446899 [TBL] [Abstract][Full Text] [Related]
4. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
5. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Maji S; Agarwal T; Das J; Maiti TK Carbohydr Polym; 2018 Jun; 189():115-125. PubMed ID: 29580388 [TBL] [Abstract][Full Text] [Related]
6. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
7. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering. Huang D; Zuo Y; Zou Q; Wang Y; Gao S; Wang X; Liu H; Li Y J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):51-7. PubMed ID: 21953937 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Shahbazarab Z; Teimouri A; Chermahini AN; Azadi M Int J Biol Macromol; 2018 Mar; 108():1017-1027. PubMed ID: 29122713 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite or Fluorapatite-Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?-A Comprehensive Comparative Study. Kazimierczak P; Wessely-Szponder J; Palka K; Barylyak A; Zinchenko V; Przekora A Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982648 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
11. Biomaterial composed of chitosan, riboflavin, and hydroxyapatite for bone tissue regeneration. Gaweł J; Milan J; Żebrowski J; Płoch D; Stefaniuk I; Kus-Liśkiewicz M Sci Rep; 2023 Oct; 13(1):17004. PubMed ID: 37813934 [TBL] [Abstract][Full Text] [Related]
12. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
13. The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro. Kazimierczak P; Koziol M; Przekora A Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498630 [TBL] [Abstract][Full Text] [Related]
14. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related]
15. Towards a sustainable chitosan-based composite scaffold derived from Setiawati A; Tricahya K; Dika Octa Riswanto F; Dwiatmaka Y J Biomater Sci Polym Ed; 2024 Feb; 35(2):146-163. PubMed ID: 37855210 [TBL] [Abstract][Full Text] [Related]
16. Production of Agarose-Hydroxyapatite Composites via Supercritical Gel Drying, for Bone Tissue Engineering. Zanotti A; Baldino L; Cardea S; Reverchon E Molecules; 2024 May; 29(11):. PubMed ID: 38893374 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan. Ying R; Wang H; Sun R; Chen K Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110689. PubMed ID: 32204004 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996 [TBL] [Abstract][Full Text] [Related]
20. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]