These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31480639)

  • 1. Near-Infrared Fluorescent Sorbitol Probe for Targeted Photothermal Cancer Therapy.
    Lee S; Jung JS; Jo G; Yang DH; Koh YS; Hyun H
    Cancers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Tumor Targeting of Renal-Clearable ZW800-1 Conjugate for Efficient Photothermal Cancer Therapy.
    Park MH; Jo G; Lee BY; Kim EJ; Hyun H
    Biomedicines; 2021 Sep; 9(9):. PubMed ID: 34572335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Targeting with Methotrexate-Conjugated Zwitterionic Near-Infrared Fluorophore for Precise Photothermal Therapy.
    Jo G; Kim EJ; Park MH; Hyun H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-Targeted ZW800-1 Analog for Enhanced Tumor Imaging and Photothermal Therapy.
    Park MH; Jo G; Kim EJ; Hyun H
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infra-red fluorescent chitosan oligosaccharide lactate for targeted cancer imaging and photothermal therapy.
    Lee S; Jo G; Jung JS; Yang DH; Hyun H
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):1144-1152. PubMed ID: 32885672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor Targeting by Conjugation of Chlorambucil with Zwitterionic Near-Infrared Fluorophore for Cancer Phototherapy.
    Jo G; Kim EJ; Hyun H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitterionic near-infrared fluorophore for targeted photothermal cancer therapy.
    Lim W; Jo G; Kim EJ; Cho H; Park MH; Hyun H
    J Mater Chem B; 2020 Apr; 8(13):2589-2597. PubMed ID: 32129419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Tuning of IR-786 for Improved Tumor Imaging and Photothermal Therapy.
    Lim W; Byun JY; Jo G; Kim EJ; Park MH; Hyun H
    Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35336050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence.
    Yang Y; Fan X; Li L; Yang Y; Nuernisha A; Xue D; He C; Qian J; Hu Q; Chen H; Liu J; Huang W
    ACS Nano; 2020 Feb; 14(2):2509-2521. PubMed ID: 32022539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Inherent Tumor-Targeted IR-783 for Near-Infrared Fluorescence-Guided Photothermal Therapy.
    Park Y; Park MH; Hyun H
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Fluorescent Hydroxyapatite Nanoparticles for Targeted Photothermal Cancer Therapy.
    Jo G; Park Y; Park MH; Hyun H
    Pharmaceutics; 2023 Apr; 15(5):. PubMed ID: 37242617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indocyanine Green and Methyl-β-Cyclodextrin Complex for Enhanced Photothermal Cancer Therapy.
    Jo G; Lee BY; Kim EJ; Park MH; Hyun H
    Biomedicines; 2020 Nov; 8(11):. PubMed ID: 33167365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation.
    Yang C; Wang H; Yokomizo S; Hickey M; Chang H; Kang H; Fukuda T; Song MY; Lee SY; Park JW; Bao K; Choi HS
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13847-13852. PubMed ID: 33857346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterion influence on near-infrared-II heptamethine cyanine salts for photothermal therapy.
    Zheng Y; Chen T; Gao Y; Chen H
    Bioorg Chem; 2024 Apr; 145():107206. PubMed ID: 38367428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-targeted small molecule for dual-modal imaging-guided phototherapy upon near-infrared excitation.
    Meng X; Li W; Sun Z; Zhang J; Zhou L; Deng G; Gong P; Cai L
    J Mater Chem B; 2017 Dec; 5(47):9405-9411. PubMed ID: 32264543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy.
    Pan GY; Jia HR; Zhu YX; Wu FG
    Nanoscale; 2018 Jan; 10(4):2115-2127. PubMed ID: 29326993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanine-Curcumin Assembling Nanoparticles for Near-Infrared Imaging and Photothermal Therapy.
    Zhang J; Liu S; Hu X; Xie Z; Jing X
    ACS Biomater Sci Eng; 2016 Nov; 2(11):1942-1950. PubMed ID: 33440529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Tumor Accumulation of Low-Molecular-Weight Hyaluronic Acid/Chitosan Nanocomplexes for Photothermal Therapy.
    Jo G; Kim EJ; Hyun H
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy.
    Jo G; Kim EJ; Hyun H
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional Tumor-Targeted Bioprobe for Phototheranosis.
    Park HS; Yokomizo S; Wang H; Manganiello S; Monaco H; McDonnell R; Kim HJ; Rho J; Gladstone J; Ahn S; Jung H; Kang H; Bao K; Kashiwagi S; Choi HS
    Biomater Res; 2024; 28():0002. PubMed ID: 38327616
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.