These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31480670)

  • 1. Integrated Approaches to Reveal Genes Crucial for Tannin Degradation in
    Zhang LL; Li J; Wang YL; Liu S; Wang ZP; Yu XJ
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Secretory Expression of a Thermostable Tannase from Aureobasidium melanogenum T9: Potential Candidate for Food and Agricultural Industries.
    Liu L; Guo J; Zhou XF; Li Z; Zhou HX; Song WQ
    Front Bioeng Biotechnol; 2021; 9():769816. PubMed ID: 35211468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.
    Reverón I; Jiménez N; Curiel JA; Peñas E; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115379
    [No Abstract]   [Full Text] [Related]  

  • 4. Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus.
    Jiménez N; Reverón I; Esteban-Torres M; López de Felipe F; de Las Rivas B; Muñoz R
    Microb Cell Fact; 2014 Oct; 13():154. PubMed ID: 25359406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast
    Pan J; Wang NN; Yin XJ; Liang XL; Wang ZP
    Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33143376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review.
    Dhiman S; Mukherjee G; Singh AK
    Int Microbiol; 2018 Dec; 21(4):175-195. PubMed ID: 30810902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of gallotannins and ellagitannins.
    Li M; Kai Y; Qiang H; Dongying J
    J Basic Microbiol; 2006; 46(1):68-84. PubMed ID: 16463321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of tannase production by Aureobasidium pullulans DBS66.
    Banerjee D; Pati BR
    J Microbiol Biotechnol; 2007 Jun; 17(6):1049-53. PubMed ID: 18050927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications.
    Lekshmi R; Arif Nisha S; Thirumalai Vasan P; Kaleeswaran B
    Environ Res; 2021 Oct; 201():111625. PubMed ID: 34224709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP-PKA and HOG1 signaling pathways regulate liamocin production by different ways via the transcriptional activator Msn2 in Aureobasidium melanogenum.
    Zhang M; Gao ZC; Chi Z; Liu GL; Hu Z; Chi ZM
    Enzyme Microb Technol; 2021 Feb; 143():109705. PubMed ID: 33375973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains.
    Pulido-Mateos EC; Lessard-Lord J; Guyonnet D; Desjardins Y; Roy D
    Sci Rep; 2022 Dec; 12(1):22406. PubMed ID: 36575241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.
    Jiang H; Liu NN; Liu GL; Chi Z; Wang JM; Zhang LL; Chi ZM
    Extremophiles; 2016 Jul; 20(4):567-77. PubMed ID: 27290725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus.
    Ueda S; Nomoto R; Yoshida K; Osawa R
    BMC Microbiol; 2014 Apr; 14():87. PubMed ID: 24708557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial tannases: classification and biochemical properties.
    de Las Rivas B; Rodríguez H; Anguita J; Muñoz R
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):603-623. PubMed ID: 30460533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2.
    Kanpiengjai A; Khanongnuch C; Lumyong S; Haltrich D; Nguyen TH; Kittibunchakul S
    Microb Cell Fact; 2020 Apr; 19(1):95. PubMed ID: 32334591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast
    Meier AK; Worch S; Böer E; Hartmann A; Mascher M; Marzec M; Scholz U; Riechen J; Baronian K; Schauer F; Bode R; Kunze G
    Front Microbiol; 2017; 8():1777. PubMed ID: 28966611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and Immobilization of Tannase for Tannery Effluent Treatment from Lactobacillus plantarum and Staphylococcus lugdunensis: A Comparative Study.
    Chaitanyakumar A; Somu P; Srinivasan R
    Appl Biochem Biotechnol; 2024 Feb; ():. PubMed ID: 38421571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6.
    Das Mohapatra PK; Mondal KC; Pati BR
    Pol J Microbiol; 2006; 55(4):297-301. PubMed ID: 17416066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of tannic acid degradation by soil bacteria.
    Ilori MO; Adebusoye SA; Amund OO; Oyetoran BO
    Pak J Biol Sci; 2007 Sep; 10(18):3224-7. PubMed ID: 19090131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
    Rodríguez H; de las Rivas B; Gómez-Cordovés C; Muñoz R
    Int J Food Microbiol; 2008 Jan; 121(1):92-8. PubMed ID: 18054106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.