BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 31480709)

  • 1. Precision Agriculture Techniques and Practices: From Considerations to Applications.
    Shafi U; Mumtaz R; García-Nieto J; Hassan SA; Zaidi SAR; Iqbal N
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced UAV-WSN System for Intelligent Monitoring in Precision Agriculture.
    Popescu D; Stoican F; Stamatescu G; Ichim L; Dragana C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review.
    Jawad HM; Nordin R; Gharghan SK; Jawad AM; Ismail M
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28771214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wireless sensor network-based ubiquitous paprika growth management system.
    Hwang J; Shin C; Yoe H
    Sensors (Basel); 2010; 10(12):11566-89. PubMed ID: 22163543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEDC: An Energy Efficient Data Communication Scheme Based on New Routing Approach in Wireless Sensor Networks for Future IoT Applications.
    Gupta D; Wadhwa S; Rani S; Khan Z; Boulila W
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles.
    Gao D; Sun Q; Hu B; Zhang S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture.
    Martínez R; Pastor JÁ; Álvarez B; Iborra A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.
    Ferrández-Pastor FJ; García-Chamizo JM; Nieto-Hidalgo M; Mora-Pascual J; Mora-Martínez J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
    Hwang J; Shin C; Yoe H
    Sensors (Basel); 2010; 10(12):11189-211. PubMed ID: 22163520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things.
    Monteleone S; Moraes EA; Tondato de Faria B; Aquino Junior PT; Maia RF; Neto AT; Toscano A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture.
    Haseeb K; Ud Din I; Almogren A; Islam N
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Home-based IoT for Real-time and Secure Remote Health Monitoring of Triage and Priority System using Body Sensors: Multi-driven Systematic Review.
    Talal M; Zaidan AA; Zaidan BB; Albahri AS; Alamoodi AH; Albahri OS; Alsalem MA; Lim CK; Tan KL; Shir WL; Mohammed KI
    J Med Syst; 2019 Jan; 43(3):42. PubMed ID: 30648217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging LoRaWAN Technology for Precision Agriculture in Greenhouses.
    Singh RK; Aernouts M; De Meyer M; Weyn M; Berkvens R
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil Sensors and Plant Wearables for Smart and Precision Agriculture.
    Yin H; Cao Y; Marelli B; Zeng X; Mason AJ; Cao C
    Adv Mater; 2021 May; 33(20):e2007764. PubMed ID: 33829545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN.
    Singh RK; Rahmani MH; Weyn M; Berkvens R
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management.
    Bogena HR; Weuthen A; Huisman JA
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-Art Internet of Things in Protected Agriculture.
    Shi X; An X; Zhao Q; Liu H; Xia L; Sun X; Guo Y
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30999637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Sensors-Based Agri-Food Traceability System Remotely Managed by A Software Platform for Optimized Farm Management.
    Visconti P; de Fazio R; Velázquez R; Del-Valle-Soto C; Giannoccaro NI
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis of IoT-Based Health and Environment WSN Deployment.
    Shakeri M; Sadeghi-Niaraki A; Choi SM; Islam SMR
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33092224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.