These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31480722)

  • 41. Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency.
    Du ZJ; Huang SS; Mu TJ; Zhao Q; Martin RR; Xu K
    IEEE Trans Vis Comput Graph; 2022 Apr; 28(4):1745-1757. PubMed ID: 33001804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.
    Oh T; Lee D; Kim H; Myung H
    Sensors (Basel); 2015 Jul; 15(7):15830-52. PubMed ID: 26151203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimized LOAM Using Ground Plane Constraints and SegMatch-Based Loop Detection.
    Liu X; Zhang L; Qin S; Tian D; Ouyang S; Chen C
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for Dynamic Object Removal.
    Theodorou C; Velisavljevic V; Dyo V
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RGB-D SLAM Combining Visual Odometry and Extended Information Filter.
    Zhang H; Liu Y; Tan J; Xiong N
    Sensors (Basel); 2015 Jul; 15(8):18742-66. PubMed ID: 26263990
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast and Robust Monocular Visua-Inertial Odometry Using Points and Lines.
    Zhang N; Zhao Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors.
    Liu G; Zeng W; Feng B; Xu F
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved Point-Line Feature Based Visual SLAM Method for Complex Environments.
    Zhou F; Zhang L; Deng C; Fan X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment.
    Ren Z; Wang L; Bi L
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31266207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indoor visual SLAM dataset with various acquisition modalities.
    El Bouazzaoui I; Rodriguez S; Vincke B; El Ouardi A
    Data Brief; 2021 Dec; 39():107496. PubMed ID: 34746344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment.
    Chang Z; Wu H; Sun Y; Li C
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208354
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.
    Su PC; Shen J; Xu W; Cheung SS; Luo Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feature-Based Laser Scan Matching and Its Application for Indoor Mapping.
    Li J; Zhong R; Hu Q; Ai M
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human Collaborative Localization and Mapping in Indoor Environments with Non-Continuous Stereo.
    Guerra E; Munguia R; Bolea Y; Grau A
    Sensors (Basel); 2016 Feb; 16(3):275. PubMed ID: 26927100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstruction-based 6D pose estimation for robotic assembly.
    Shi Z; Xu K; Li Z; Guan B; Wang G; Shang Y
    Appl Opt; 2020 Nov; 59(31):9824-9835. PubMed ID: 33175820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pose Estimation for Straight Wing Aircraft Based on Consistent Line Clustering and Planes Intersection.
    Teng X; Yu Q; Luo J; Zhang X; Wang G
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30654504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM.
    Zhang T; Zhang L; Chen Y; Zhou Y
    IEEE Trans Image Process; 2022; 31():6562-6576. PubMed ID: 36240038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 2D LiDAR SLAM Back-End Optimization with Control Network Constraint for Mobile Mapping.
    Wen J; Qian C; Tang J; Liu H; Ye W; Fan X
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FPP-SLAM: indoor simultaneous localization and mapping based on fringe projection profilometry.
    Zhao Y; Yu H; Zhang K; Zheng Y; Zhang Y; Zheng D; Han J
    Opt Express; 2023 Feb; 31(4):5853-5871. PubMed ID: 36823857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visual Semantic Landmark-Based Robust Mapping and Localization for Autonomous Indoor Parking.
    Zhao J; Huang Y; He X; Zhang S; Ye C; Feng T; Xiong L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.