BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31481013)

  • 1. Economic optimization of full-sib test group size and genotyping effort in a breeding program for Atlantic salmon.
    Janssen K; Saatkamp HW; Calus MPL; Komen H
    Genet Sel Evol; 2019 Sep; 51(1):49. PubMed ID: 31481013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Low-Cost Genotyping and Imputation Strategies for Genomic Selection in Atlantic Salmon.
    Tsairidou S; Hamilton A; Robledo D; Bron JE; Houston RD
    G3 (Bethesda); 2020 Feb; 10(2):581-590. PubMed ID: 31826882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
    Tsai HY; Matika O; Edwards SM; Antolín-Sánchez R; Hamilton A; Guy DR; Tinch AE; Gharbi K; Stear MJ; Taggart JB; Bron JE; Hickey JM; Houston RD
    G3 (Bethesda); 2017 Apr; 7(4):1377-1383. PubMed ID: 28250015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity-by-descent genomic selection using selective and sparse genotyping.
    Odegård J; Meuwissen TH
    Genet Sel Evol; 2014 Jan; 46(1):3. PubMed ID: 24444432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar).
    Bangera R; Correa K; Lhorente JP; Figueroa R; Yáñez JM
    BMC Genomics; 2017 Jan; 18(1):121. PubMed ID: 28143402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values.
    Lillehammer M; Meuwissen TH; Sonesson AK
    Genet Sel Evol; 2013 Oct; 45(1):39. PubMed ID: 24127852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations.
    Tsai HY; Hamilton A; Tinch AE; Guy DR; Bron JE; Taggart JB; Gharbi K; Stear M; Matika O; Pong-Wong R; Bishop SC; Houston RD
    Genet Sel Evol; 2016 Jun; 48(1):47. PubMed ID: 27357694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction.
    Howard JT; Rathje TA; Bruns CE; Wilson-Wells DF; Kachman SD; Spangler ML
    J Anim Sci; 2018 Nov; 96(11):4532-4542. PubMed ID: 30107560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic selection in a pig population including information from slaughtered full sibs of boars within a sib-testing program.
    Samorè AB; Buttazzoni L; Gallo M; Russo V; Fontanesi L
    Animal; 2015 May; 9(5):750-9. PubMed ID: 25510405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits.
    Ødegård J; Meuwissen TH
    Genet Sel Evol; 2015 Feb; 47(1):8. PubMed ID: 25888522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic selection for two traits in a maternal pig breeding scheme.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2013 Jul; 91(7):3079-87. PubMed ID: 23658351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of reducing the frequency of animals genotyped at higher density on imputation and prediction accuracies using ssGBLUP1.
    Sollero BP; Howard JT; Spangler ML
    J Anim Sci; 2019 Jul; 97(7):2780-2792. PubMed ID: 31115442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs.
    See GM; Fix JS; Schwab CR; Spangler ML
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic selection for maternal traits in pigs.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2011 Dec; 89(12):3908-16. PubMed ID: 21841086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the allocation of resources for genomic selection in one breeding cycle.
    Riedelsheimer C; Melchinger AE
    Theor Appl Genet; 2013 Nov; 126(11):2835-48. PubMed ID: 23982591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates.
    Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC
    J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost.
    Huang Y; Hickey JM; Cleveland MA; Maltecca C
    Genet Sel Evol; 2012 Jul; 44(1):25. PubMed ID: 22849718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM
    Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.