These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31481013)

  • 21. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations.
    Nirea KG; Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Oct; 44(1):30. PubMed ID: 23110512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic Selection for Any Dairy Breeding Program via Optimized Investment in Phenotyping and Genotyping.
    Obšteter J; Jenko J; Gorjanc G
    Front Genet; 2021; 12():637017. PubMed ID: 33679899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Economical optimization of a breeding scheme by selective phenotyping of the calibration set in a multi-trait context: application to bread making quality.
    Ben-Sadoun S; Rincent R; Auzanneau J; Oury FX; Rolland B; Heumez E; Ravel C; Charmet G; Bouchet S
    Theor Appl Genet; 2020 Jul; 133(7):2197-2212. PubMed ID: 32303775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multistage selection for maximum economic return with an application to beef cattle breeding.
    Xu S; Martin TG; Muir WM
    J Anim Sci; 1995 Mar; 73(3):699-710. PubMed ID: 7608002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation studies to optimize genomic selection in honey bees.
    Bernstein R; Du M; Hoppe A; Bienefeld K
    Genet Sel Evol; 2021 Jul; 53(1):64. PubMed ID: 34325663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar).
    Correa K; Bangera R; Figueroa R; Lhorente JP; Yáñez JM
    Genet Sel Evol; 2017 Jan; 49(1):15. PubMed ID: 28143593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimized grouping to increase accuracy of prediction of breeding values based on group records in genomic selection breeding programs.
    Chu TT; Bastiaansen JWM; Berg P; Komen H
    Genet Sel Evol; 2019 Nov; 51(1):64. PubMed ID: 31730478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benefits of testing in both bio-secure and production environments in genomic selection breeding programs for commercial broiler chicken.
    Chu TT; Alemu SW; Norberg E; Sørensen AC; Henshall J; Hawken R; Jensen J
    Genet Sel Evol; 2018 Nov; 50(1):52. PubMed ID: 30390619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Commercial implementation of genomic selection in Tasmanian Atlantic salmon: Scheme evolution and validation.
    Verbyla KL; Kube PD; Evans BS
    Evol Appl; 2022 Apr; 15(4):631-644. PubMed ID: 35505884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce.
    Chen ZQ; Baison J; Pan J; Karlsson B; Andersson B; Westin J; García-Gil MR; Wu HX
    BMC Genomics; 2018 Dec; 19(1):946. PubMed ID: 30563448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and economic benefits of selection based on performance recording and genotyping in lower tiers of multi-tiered sheep breeding schemes.
    Santos BF; van der Werf JH; Gibson JP; Byrne TJ; Amer PR
    Genet Sel Evol; 2017 Jan; 49(1):10. PubMed ID: 28095776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array.
    Tsai HY; Hamilton A; Tinch AE; Guy DR; Gharbi K; Stear MJ; Matika O; Bishop SC; Houston RD
    BMC Genomics; 2015 Nov; 16():969. PubMed ID: 26582102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A combination of walk-back and optimum contribution selection in fish: a simulation study.
    Sonesson AK
    Genet Sel Evol; 2005; 37(6):587-99. PubMed ID: 16277969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response to genomic selection: the Bulmer effect and the potential of genomic selection when the number of phenotypic records is limiting.
    Van Grevenhof EM; Van Arendonk JA; Bijma P
    Genet Sel Evol; 2012 Aug; 44(1):26. PubMed ID: 22862849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prioritizing animals for dense genotyping in order to impute missing genotypes of sparsely genotyped animals.
    Yu X; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2014 Aug; 46(1):46. PubMed ID: 25158690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimising multistage dairy cattle breeding schemes including genomic selection using decorrelated or optimum selection indices.
    Börner V; Reinsch N
    Genet Sel Evol; 2012 Jan; 44(1):1. PubMed ID: 22252172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased accuracy of artificial selection by using the realized relationship matrix.
    Hayes BJ; Visscher PM; Goddard ME
    Genet Res (Camb); 2009 Feb; 91(1):47-60. PubMed ID: 19220931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genotyping strategies of selection candidates in livestock breeding programmes.
    Granleese T; Clark SA; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):91-101. PubMed ID: 30690805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Power of QTL mapping experiments in commercial Atlantic salmon populations, exploiting linkage and linkage disequilibrium and effect of limited recombination in males.
    Hayes BJ; Gjuvsland A; Omholt S
    Heredity (Edinb); 2006 Jul; 97(1):19-26. PubMed ID: 16685283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.