BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 31481219)

  • 1. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsHKT1;5 mediates Na
    Kobayashi NI; Yamaji N; Yamamoto H; Okubo K; Ueno H; Costa A; Tanoi K; Matsumura H; Fujii-Kashino M; Horiuchi T; Nayef MA; Shabala S; An G; Ma JF; Horie T
    Plant J; 2017 Aug; 91(4):657-670. PubMed ID: 28488420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.
    Suzuki K; Yamaji N; Costa A; Okuma E; Kobayashi NI; Kashiwagi T; Katsuhara M; Wang C; Tanoi K; Murata Y; Schroeder JI; Ma JF; Horie T
    BMC Plant Biol; 2016 Jan; 16():22. PubMed ID: 26786707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-DNA Tagging-Based Gain-of-Function of OsHKT1;4 Reinforces Na Exclusion from Leaves and Stems but Triggers Na Toxicity in Roots of Rice Under Salt Stress.
    Oda Y; Kobayashi NI; Tanoi K; Ma JF; Itou Y; Katsuhara M; Itou T; Horie T
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance.
    Senadheera P; Singh RK; Maathuis FJ
    J Exp Bot; 2009; 60(9):2553-63. PubMed ID: 19395386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of two different Na
    Sriskantharajah K; Osumi S; Chuamnakthong S; Nampei M; Amas JC; Gregorio GB; Ueda A
    Plant Sci; 2020 Aug; 297():110517. PubMed ID: 32563456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na
    Zhang Y; Fang J; Wu X; Dong L
    BMC Plant Biol; 2018 Dec; 18(1):375. PubMed ID: 30594151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing.
    Cotsaftis O; Plett D; Shirley N; Tester M; Hrmova M
    PLoS One; 2012; 7(7):e39865. PubMed ID: 22808069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.).
    Li Q; Yang A; Zhang WH
    J Exp Bot; 2016 Dec; 67(22):6431-6444. PubMed ID: 27811002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium transporter OsHAK17 may contribute to saline-alkaline tolerant mechanisms in rice (Oryza sativa).
    Nampei M; Ogi H; Sreewongchai T; Nishida S; Ueda A
    J Plant Res; 2024 May; 137(3):505-520. PubMed ID: 38427146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.
    Porcel R; Aroca R; Azcon R; Ruiz-Lozano JM
    Mycorrhiza; 2016 Oct; 26(7):673-84. PubMed ID: 27113587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype.
    Matsuda S; Nagasawa H; Yamashiro N; Yasuno N; Watanabe T; Kitazawa H; Takano S; Tokuji Y; Tani M; Takamure I; Kato K
    Plant Sci; 2014 Jul; 224():103-11. PubMed ID: 24908511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt Tolerance in Rice.
    Chen ZC; Yamaji N; Horie T; Che J; Li J; An G; Ma JF
    Plant Physiol; 2017 Jul; 174(3):1837-1849. PubMed ID: 28487477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice.
    Chakraborty K; Mondal S; Ray S; Samal P; Pradhan B; Chattopadhyay K; Kar MK; Swain P; Sarkar RK
    Front Plant Sci; 2020; 11():265. PubMed ID: 32269578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rice High-Affinity Potassium Transporter1;1 Is Involved in Salt Tolerance and Regulated by an MYB-Type Transcription Factor.
    Wang R; Jing W; Xiao L; Jin Y; Shen L; Zhang W
    Plant Physiol; 2015 Jul; 168(3):1076-90. PubMed ID: 25991736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a HKT-type transporter in rice as a general alkali cation transporter.
    Golldack D; Su H; Quigley F; Kamasani UR; Muñoz-Garay C; Balderas E; Popova OV; Bennett J; Bohnert HJ; Pantoja O
    Plant J; 2002 Aug; 31(4):529-42. PubMed ID: 12182709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress.
    Suzuki K; Costa A; Nakayama H; Katsuhara M; Shinmyo A; Horie T
    J Plant Res; 2016 Jan; 129(1):67-77. PubMed ID: 26578190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic selectivity and coordinated transport of Na
    Chakraborty K; Chattaopadhyay K; Nayak L; Ray S; Yeasmin L; Jena P; Gupta S; Mohanty SK; Swain P; Sarkar RK
    Planta; 2019 Nov; 250(5):1637-1653. PubMed ID: 31399792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in Expression Level of
    Al Nayef M; Solis C; Shabala L; Ogura T; Chen Z; Bose J; Maathuis FJM; Venkataraman G; Tanoi K; Yu M; Zhou M; Horie T; Shabala S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.