BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31481448)

  • 21. Incidence and Genetic Bases of Nitrofurantoin Resistance in Clinical Isolates of Two Successful Multidrug-Resistant Clones of Salmonella enterica Serovar Typhimurium: Pandemic "DT 104" and pUO-StVR2.
    García V; Montero I; Bances M; Rodicio R; Rodicio MR
    Microb Drug Resist; 2017 Jun; 23(4):405-412. PubMed ID: 27809653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli.
    Sandegren L; Lindqvist A; Kahlmeter G; Andersson DI
    J Antimicrob Chemother; 2008 Sep; 62(3):495-503. PubMed ID: 18544599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia coli K12.
    Breeze AS; Obaseiki-Ebor EE
    J Gen Microbiol; 1983 Jan; 129(1):99-103. PubMed ID: 6339681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in chromosomal genes
    Wan Y; Mills E; Leung RCY; Vieira A; Zhi X; Croucher NJ; Woodford N; Jauneikaite E; Ellington MJ; Sriskandan S
    Microb Genom; 2021 Dec; 7(12):. PubMed ID: 34860151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Type I nitroreductases of Escherichia coli.
    Bryant DW; McCalla DR; Leeksma M; Laneuville P
    Can J Microbiol; 1981 Jan; 27(1):81-6. PubMed ID: 7011517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
    Kutty R; Bennett GN
    Arch Microbiol; 2005 Nov; 184(3):158-67. PubMed ID: 16187099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of R-plasmid-determined resistance to aminoglycoside antibiotics by R-plasmid nitrofurantoin resistance in Escherichia coli.
    Obaseiki-Ebor EE; Gborikoko C
    Chemotherapy; 1984; 30(2):92-6. PubMed ID: 6365482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs.
    Stevens M; Howe C; Ray AM; Washburn A; Chitre S; Sivinski J; Park Y; Hoang QQ; Chapman E; Johnson SM
    Bioorg Med Chem; 2020 Nov; 28(22):115710. PubMed ID: 33007545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state and stopped-flow kinetic studies of three Escherichia coli NfsB mutants with enhanced activity for the prodrug CB1954.
    Jarrom D; Jaberipour M; Guise CP; Daff S; White SA; Searle PF; Hyde EI
    Biochemistry; 2009 Aug; 48(32):7665-72. PubMed ID: 19580253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2'-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties.
    Valle A; Le Borgne S; Bolívar J; Cabrera G; Cantero D
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):163-71. PubMed ID: 22173483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NITROFURAN DERIVATIVES AS RADIOMIMETIC AGENTS: CROSS-RESISTANCE STUDIES WITH ESCHERICHIA COLI.
    MCCALLA DR
    Can J Microbiol; 1965 Apr; 11():185-91. PubMed ID: 14323030
    [No Abstract]   [Full Text] [Related]  

  • 32. Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954.
    Prosser GA; Copp JN; Syddall SP; Williams EM; Smaill JB; Wilson WR; Patterson AV; Ackerley DF
    Biochem Pharmacol; 2010 Mar; 79(5):678-87. PubMed ID: 19852945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study on 1-nitropyrene and nitrofurazone reductases in Escherichia coli.
    Narai N; Kitamura S; Tatsumi K
    J Pharmacobiodyn; 1984 Jun; 7(6):407-13. PubMed ID: 6384469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residue Phe42 is critical for the catalytic activity of Escherichia coli major nitroreductase NfsA.
    Yang J; Zhan J; Bai J; Liu P; Xue Y; Yang Q
    Biotechnol Lett; 2013 Oct; 35(10):1693-700. PubMed ID: 23801116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction.
    Mercier C; Chalansonnet V; Orenga S; Gilbert C
    J Appl Microbiol; 2013 Oct; 115(4):1012-22. PubMed ID: 23795903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breakage of bacterial DNA by nitrofuran derivatives.
    McCalla DR; Reuvers A; Kaiser C
    Cancer Res; 1971 Dec; 31(12):2184-8. PubMed ID: 4941089
    [No Abstract]   [Full Text] [Related]  

  • 37. Nitrofuran reductase activity in nitrofurantoin-resistant strains of Escherichia coli K12: some with chromosomally determined resistance and others carrying R-plasmids.
    Breeze AS; Obaseiki-Ebor EE
    J Antimicrob Chemother; 1983 Dec; 12(6):543-7. PubMed ID: 6363380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli.
    Aedo SJ; Tang J; Brynildsen MP
    Antimicrob Agents Chemother; 2021 Feb; 65(3):. PubMed ID: 33361301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on cis-trans isomerization of nitrofuran derivatives by bacterial nitroreductases.
    Koga N; Tatsumi K; Koga H; Horiuchi T; Yoshimura H
    J Pharmacobiodyn; 1984 Aug; 7(8):570-6. PubMed ID: 6392502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Antibacterial activity of new derivatives of nitrofuran and nitrothiophen].
    Glukhov NV; Kulikova LK
    Zh Mikrobiol Epidemiol Immunobiol; 1973 Feb; 50(2):98-101. PubMed ID: 4594218
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.