BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31481464)

  • 1. Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
    Clausse V; Tao D; Debnath S; Fang Y; Tagad HD; Wang Y; Sun H; LeClair CA; Mazur SJ; Lane K; Shi ZD; Vasalatiy O; Eells R; Baker LK; Henderson MJ; Webb MR; Shen M; Hall MD; Appella E; Appella DH; Coussens NP
    J Biol Chem; 2019 Nov; 294(46):17654-17668. PubMed ID: 31481464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen.
    Clausse V; Fang Y; Tao D; Tagad HD; Sun H; Wang Y; Karavadhi S; Lane K; Shi ZD; Vasalatiy O; LeClair CA; Eells R; Shen M; Patnaik S; Appella E; Coussens NP; Hall MD; Appella DH
    ACS Pharmacol Transl Sci; 2022 Oct; 5(10):993-1006. PubMed ID: 36268125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Durell SR; Feng H; Bai Y; Anderson CW; Appella E
    Biochemistry; 2006 Nov; 45(44):13193-202. PubMed ID: 17073441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2.
    Coussens NP; Kales SC; Henderson MJ; Lee OW; Horiuchi KY; Wang Y; Chen Q; Kuznetsova E; Wu J; Chakka S; Cheff DM; Cheng KC; Shinn P; Brimacombe KR; Shen M; Simeonov A; Lal-Nag M; Ma H; Jadhav A; Hall MD
    J Biol Chem; 2018 Aug; 293(35):13750-13765. PubMed ID: 29945974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Features Important for Activity in a Class of Inhibitors Targeting the Wip1 Flap Subdomain.
    Tagad HD; Debnath S; Clausse V; Saha M; Mazur SJ; Appella E; Appella DH
    ChemMedChem; 2018 May; 13(9):894-901. PubMed ID: 29476592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WIP1 phosphatase as pharmacological target in cancer therapy.
    Pecháčková S; Burdová K; Macurek L
    J Mol Med (Berl); 2017 Jun; 95(6):589-599. PubMed ID: 28439615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides: A new series of small molecule inhibitors for Wip1 phosphatase.
    Robello M; Zheng H; Saha M; George Rosenker KM; Debnath S; Kumar JP; Tagad HD; Mazur SJ; Appella E; Appella DH
    Eur J Med Chem; 2022 Dec; 243():114763. PubMed ID: 36179402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulators of intestinal alkaline phosphatase.
    Bobkova EV; Kiffer-Moreira T; Sergienko EA
    Methods Mol Biol; 2013; 1053():135-44. PubMed ID: 23860652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways.
    Lu X; Nguyen TA; Moon SH; Darlington Y; Sommer M; Donehower LA
    Cancer Metastasis Rev; 2008 Jun; 27(2):123-35. PubMed ID: 18265945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase.
    Brazina J; Svadlenka J; Macurek L; Andera L; Hodny Z; Bartek J; Hanzlikova H
    Cell Cycle; 2015; 14(3):375-87. PubMed ID: 25659035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Minopoli G; Demidov ON; Chatterjee DK; Anderson CW; Durell SR; Appella E
    Biochemistry; 2005 Apr; 44(14):5285-94. PubMed ID: 15807522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression.
    Han HS; Yu E; Song JY; Park JY; Jang SJ; Choi J
    Mol Cancer Res; 2009 May; 7(5):713-23. PubMed ID: 19435816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3.
    Pechackova S; Burdova K; Benada J; Kleiblova P; Jenikova G; Macurek L
    Oncotarget; 2016 Mar; 7(12):14458-75. PubMed ID: 26883108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular Interactions of small-molecule inhibitors affecting the YopH protein tyrosine phosphatase.
    Hogan M; Bahta M; Cherry S; Lountos GT; Tropea JE; Zhao BM; Burke TR; Waugh DS; Ulrich RG
    Chem Biol Drug Des; 2013 Mar; 81(3):323-33. PubMed ID: 23241354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wip1: A candidate phosphatase for cancer diagnosis and treatment.
    Oghabi Bakhshaiesh T; Majidzadeh-A K; Esmaeili R
    DNA Repair (Amst); 2017 Jun; 54():63-66. PubMed ID: 28385459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wip1 phosphatase modulates ATM-dependent signaling pathways.
    Shreeram S; Demidov ON; Hee WK; Yamaguchi H; Onishi N; Kek C; Timofeev ON; Dudgeon C; Fornace AJ; Anderson CW; Minami Y; Appella E; Bulavin DV
    Mol Cell; 2006 Sep; 23(5):757-64. PubMed ID: 16949371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases.
    Yamaguchi H; Durell SR; Chatterjee DK; Anderson CW; Appella E
    Biochemistry; 2007 Nov; 46(44):12594-603. PubMed ID: 17939684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction.
    Gilmartin AG; Faitg TH; Richter M; Groy A; Seefeld MA; Darcy MG; Peng X; Federowicz K; Yang J; Zhang SY; Minthorn E; Jaworski JP; Schaber M; Martens S; McNulty DE; Sinnamon RH; Zhang H; Kirkpatrick RB; Nevins N; Cui G; Pietrak B; Diaz E; Jones A; Brandt M; Schwartz B; Heerding DA; Kumar R
    Nat Chem Biol; 2014 Mar; 10(3):181-7. PubMed ID: 24390428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53-Independent expression of wild-type p53-induced phosphatase 1 (Wip1) in methylmethane sulfonate-treated cancer cell lines and human tumors.
    Park JY; Song JY; Kim HM; Han HS; Seol HS; Jang SJ; Choi J
    Int J Biochem Cell Biol; 2012 Jun; 44(6):896-904. PubMed ID: 22405851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy.
    Clausse V; Goloudina AR; Uyanik B; Kochetkova EY; Richaud S; Fedorova OA; Hammann A; Bardou M; Barlev NA; Garrido C; Demidov ON
    Cell Death Dis; 2016 Apr; 7(4):e2195. PubMed ID: 27077811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.