BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31481541)

  • 1. Modulating Pathogenesis with Mobile-CRISPRi.
    Qu J; Prasad NK; Yu MA; Chen S; Lyden A; Herrera N; Silvis MR; Crawford E; Looney MR; Peters JM; Rosenberg OS
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31481541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi.
    Yu MA; Banta AB; Ward RD; Prasad NK; Kwon MS; Rosenberg OS; Peters JM
    Methods Mol Biol; 2024; 2721():13-32. PubMed ID: 37819512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and application of the conditionally essential gene knockdown library in
    Zhu Q; Lin Q; Jiang Y; Chen S; Tian J; Yang S; Li Y; Li M; Wang Y; Shen C; Meng S; Yang L; Feng Y; Qu J
    Appl Environ Microbiol; 2023 Oct; 89(10):e0095623. PubMed ID: 37815340
    [No Abstract]   [Full Text] [Related]  

  • 4. SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa.
    Li K; Xu C; Jin Y; Sun Z; Liu C; Shi J; Chen G; Chen R; Jin S; Wu W
    mBio; 2013 Oct; 4(6):e00419-13. PubMed ID: 24169572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa.
    Lin CK; Lee DSW; McKeithen-Mead S; Emonet T; Kazmierczak B
    mBio; 2021 Jun; 12(3):e0083121. PubMed ID: 34154400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System.
    Williams McMackin EA; Marsden AE; Yahr TL
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30782629
    [No Abstract]   [Full Text] [Related]  

  • 7. Difference of Type 3 secretion system (T3SS) effector gene genotypes (exoU and exoS) and its implication to antibiotics resistances in isolates of Pseudomonas aeruginosa from chronic otitis media.
    Park MH; Kim SY; Roh EY; Lee HS
    Auris Nasus Larynx; 2017 Jun; 44(3):258-265. PubMed ID: 27461174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia.
    Smith RS; Wolfgang MC; Lory S
    Infect Immun; 2004 Mar; 72(3):1677-84. PubMed ID: 14977975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation of exsA in Pseudomonas aeruginosa.
    Li S; Weng Y; Li X; Yue Z; Chai Z; Zhang X; Gong X; Pan X; Jin Y; Bai F; Cheng Z; Wu W
    Nucleic Acids Res; 2021 Jul; 49(12):6756-6770. PubMed ID: 34139014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into the master regulator CysB-mediated bacterial virulence in Pseudomonas aeruginosa.
    Song Y; Yang C; Chen G; Zhang Y; Seng Z; Cai Z; Zhang C; Yang L; Gan J; Liang H
    Mol Microbiol; 2019 May; 111(5):1195-1210. PubMed ID: 30618115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeaD contributes to Pseudomonas aeruginosa virulence in a mouse acute pneumonia model.
    Tan H; Zhang L; Zhao Q; Chen R; Liu C; Weng Y; Peng Q; Bai F; Cheng Z; Jin S; Wu W; Jin Y
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27682417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates.
    Toska J; Sun Y; Carbonell DA; Foster AN; Jacobs MR; Pearlman E; Rietsch A
    PLoS One; 2014; 9(1):e86829. PubMed ID: 24466261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa.
    Guo Q; Wei Y; Xia B; Jin Y; Liu C; Pan X; Shi J; Zhu F; Li J; Qian L; Liu X; Cheng Z; Jin S; Lin J; Wu W
    Sci Rep; 2016 Jan; 6():19141. PubMed ID: 26751736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa.
    Xia Y; Wang D; Pan X; Xia B; Weng Y; Long Y; Ren H; Zhou J; Jin Y; Bai F; Cheng Z; Jin S; Wu W
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile-CRISPRi as a powerful tool for modulating
    Geyman LJ; Tanner MP; Rosario-Meléndez N; Peters JM; Mandel MJ; van Kessel JC
    Appl Environ Microbiol; 2024 Jun; 90(6):e0006524. PubMed ID: 38775491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa Citrate Synthase GltA Influences Antibiotic Tolerance and the Type III Secretion System through the Stringent Response.
    Chen H; Gong X; Fan Z; Xia Y; Jin Y; Bai F; Cheng Z; Pan X; Wu W
    Microbiol Spectr; 2023 Feb; 11(1):e0323922. PubMed ID: 36602339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of ExoS on
    Kroken AR; Chen CK; Evans DJ; Yahr TL; Fleiszig SMJ
    mBio; 2018 May; 9(3):. PubMed ID: 29717012
    [No Abstract]   [Full Text] [Related]  

  • 19. Pseudomonas aeruginosa: breaking down barriers.
    Berube BJ; Rangel SM; Hauser AR
    Curr Genet; 2016 Feb; 62(1):109-13. PubMed ID: 26407972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi.
    Peters JM; Koo BM; Patino R; Heussler GE; Hearne CC; Qu J; Inclan YF; Hawkins JS; Lu CHS; Silvis MR; Harden MM; Osadnik H; Peters JE; Engel JN; Dutton RJ; Grossman AD; Gross CA; Rosenberg OS
    Nat Microbiol; 2019 Feb; 4(2):244-250. PubMed ID: 30617347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.