These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 31481641)
1. A new way of presenting diagnostic imaging studies in surgical planning. Alzubedi A; Kusz M; Kuczyńska M; Białek W; Bicki J; Rudzki S Pol Przegl Chir; 2018 Nov; 91(4):48-51. PubMed ID: 31481641 [TBL] [Abstract][Full Text] [Related]
2. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography. Sánchez-Gómez S; Herrero-Salado TF; Maza-Solano JM; Ropero-Romero F; González-García J; Ambrosiani-Fernández J Acta Otorrinolaringol Esp; 2015; 66(6):317-25. PubMed ID: 25597251 [TBL] [Abstract][Full Text] [Related]
3. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Zeng C; Xing W; Wu Z; Huang H; Huang W Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187 [TBL] [Abstract][Full Text] [Related]
4. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. Alemayehu DG; Zhang Z; Tahir E; Gateau D; Zhang DF; Ma X Biomed Res Int; 2021; 2021():7940242. PubMed ID: 34676264 [TBL] [Abstract][Full Text] [Related]
5. New technologies applied to surgical processes: Virtual Reality and rapid prototyping. Suárez-Mejías C; Gomez-Ciriza G; Valverde I; Parra Calderón C; Gómez-Cía T Stud Health Technol Inform; 2015; 210():669-71. PubMed ID: 25991234 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing. Oshiro Y; Ohkohchi N Tissue Eng Part A; 2017 Jun; 23(11-12):474-480. PubMed ID: 28343411 [TBL] [Abstract][Full Text] [Related]
7. Routine clinical application of virtual reality in abdominal surgery. Sampogna G; Pugliese R; Elli M; Vanzulli A; Forgione A Minim Invasive Ther Allied Technol; 2017 Jun; 26(3):135-143. PubMed ID: 28084141 [TBL] [Abstract][Full Text] [Related]
8. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Goo HW; Park SJ; Yoo SJ Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional magnetic resonance imaging based on time-of-flight magnetic resonance angiography for superficial cerebral arteriovenous malformation--technical note. Murata T; Horiuchi T; Rahmah NN; Sakai K; Hongo K Neurol Med Chir (Tokyo); 2011; 51(2):163-7. PubMed ID: 21358166 [TBL] [Abstract][Full Text] [Related]
10. Computer-Assisted Virtual Surgical Technology Versus Three-Dimensional Printing Technology in Preoperative Planning for Displaced Three and Four-Part Fractures of the Proximal End of the Humerus. Chen Y; Jia X; Qiang M; Zhang K; Chen S J Bone Joint Surg Am; 2018 Nov; 100(22):1960-1968. PubMed ID: 30480600 [TBL] [Abstract][Full Text] [Related]
11. A paradigm shift in surgical planning and simulation using 3Dgraphy: Experience of first 50 surgeries done using 3D-printed biomodels. Bagaria V; Chaudhary K Injury; 2017 Nov; 48(11):2501-2508. PubMed ID: 28882373 [TBL] [Abstract][Full Text] [Related]
12. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography. Fischer G; Stadie A; Schwandt E; Gawehn J; Boor S; Marx J; Oertel J Neurosurg Focus; 2009 May; 26(5):E20. PubMed ID: 19408999 [TBL] [Abstract][Full Text] [Related]
13. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951 [TBL] [Abstract][Full Text] [Related]
17. [Evaluation of CT angiography vascular localization combined with refined three-dimensional printing in guiding the resection and reconstruction of complex oral cancer]. Gao SC; Tian H; Yu JJ; Chen X; Zuo L; Cai X; Shi L; Song B; Zhou X Zhonghua Zhong Liu Za Zhi; 2019 Jul; 41(7):496-500. PubMed ID: 31357835 [No Abstract] [Full Text] [Related]
18. 3D printing for preoperative planning and surgical training: a review. Ganguli A; Pagan-Diaz GJ; Grant L; Cvetkovic C; Bramlet M; Vozenilek J; Kesavadas T; Bashir R Biomed Microdevices; 2018 Aug; 20(3):65. PubMed ID: 30078059 [TBL] [Abstract][Full Text] [Related]
19. Patient-specific three-dimensional printing for Kommerell's diverticulum. Sun X; Zhang H; Zhu K; Wang C Int J Cardiol; 2018 Mar; 255():184-187. PubMed ID: 29290421 [TBL] [Abstract][Full Text] [Related]
20. Current Use of Three-dimensional Model Technology in Urology: A Road Map for Personalised Surgical Planning. Porpiglia F; Amparore D; Checcucci E; Autorino R; Manfredi M; Iannizzi G; Fiori C; Eur Urol Focus; 2018 Sep; 4(5):652-656. PubMed ID: 30293946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]