These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31482040)

  • 1. Control of Untethered Soft Grippers for Pick-and-Place Tasks.
    Ongaro F; Yoon C; van den Brink F; Abayazid M; Oh SH; Gracias DH; Misra S
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2016 Jun; 2016():299-304. PubMed ID: 31482040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous planning and control of soft untethered grippers in unstructured environments.
    Ongaro F; Scheggi S; Yoon C; den Brink FV; Oh SH; Gracias DH; Misra S
    J Microbio Robot; 2017; 12(1):45-52. PubMed ID: 29082127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance.
    Pacchierotti C; Ongaro F; van den Brink F; Yoon C; Prattichizzo D; Gracias DH; Misra S
    IEEE Trans Autom Sci Eng; 2018 Jan; 15(1):290-306. PubMed ID: 31423113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multimodal, Reconfigurable Workspace Soft Gripper for Advanced Grasping Tasks.
    Jain S; Dontu S; Teoh JEM; Alvarado PVY
    Soft Robot; 2023 Jun; 10(3):527-544. PubMed ID: 36346280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable Thermomagnetically Responsive Soft Untethered Grippers.
    Kobayashi K; Yoon C; Oh SH; Pagaduan JV; Gracias DH
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):151-159. PubMed ID: 30525417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface.
    Ongaro F; Scheggi S; Ghosh A; Denasi A; Gracias DH; Misra S
    PLoS One; 2017; 12(12):e0187441. PubMed ID: 29236716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Different Technologies for Soft Robotics Grippers.
    Terrile S; Argüelles M; Barrientos A
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery.
    Ghosh A; Yoon C; Ongaro F; Scheggi S; Selaru FM; Misra S; Gracias DH
    Front Mech Eng; 2017 Jul; 3():. PubMed ID: 31516892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Motion Control and Planning of Untethered Soft Grippers using Ultrasound Image Feedback.
    Scheggi S; Chandrasekar KKT; Yoon C; Sawaryn B; van de Steeg G; Gracias DH; Misra S
    IEEE Int Conf Robot Autom; 2017; 2017():6156-6161. PubMed ID: 31489254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetherless and Batteryless Soft Navigators and Grippers.
    Han Z; Li Y; Wu X; Zhang J
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14345-14356. PubMed ID: 38443330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GPU-Accelerated Model-Based Tracker for Untethered Submillimeter Grippers.
    Scheggi S; Yoon C; Ghosh A; Gracias DH; Misra S
    Rob Auton Syst; 2018 May; 103():111-121. PubMed ID: 31481825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable stiffness soft robotic gripper: design, development, and prospects.
    Shan Y; Zhao Y; Wang H; Dong L; Pei C; Jin Z; Sun Y; Liu T
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37948756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-scale soft grippers with environmentally responsive logic gates.
    Zhang X; Wu Y; Li Y; Jiang H; Yang Q; Wang Z; Liu J; Wang Y; Fan X; Kong J
    Mater Horiz; 2022 May; 9(5):1431-1439. PubMed ID: 35380150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.
    Hao Y; Visell Y
    Front Robot AI; 2021; 8():632006. PubMed ID: 34307466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers.
    Gerez L; Chang CM; Liarokapis M
    Front Robot AI; 2020; 7():601274. PubMed ID: 33501363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping Performance Analysis and Comparison of Multi-Chamber Ring-Shaped Soft Grippers.
    Wang D; Wu X
    Biomimetics (Basel); 2023 Jul; 8(4):. PubMed ID: 37622942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically switchable soft suction grippers.
    Koivikko A; Drotlef DM; Sitti M; Sariola V
    Extreme Mech Lett; 2021 Apr; 44():101263. PubMed ID: 33834089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft gripper for small fruits harvesting and pick and place operations.
    Navas E; Shamshiri RR; Dworak V; Weltzien C; Fernández R
    Front Robot AI; 2023; 10():1330496. PubMed ID: 38304762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untethered Actuation of Hybrid Hydrogel Gripper via Ultrasound.
    Son H; Byun E; Yoon YJ; Nam J; Song SH; Yoon C
    ACS Macro Lett; 2020 Dec; 9(12):1766-1772. PubMed ID: 35653680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.