These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31482668)

  • 1. Nanosize Cation-Disordered Rocksalt Oxides: Na
    Kobayashi T; Zhao W; Rajendra HB; Yamanaka K; Ohta T; Yabuuchi N
    Small; 2020 Mar; 16(12):e1902462. PubMed ID: 31482668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured LiMnO
    Sawamura M; Kobayakawa S; Kikkawa J; Sharma N; Goonetilleke D; Rawal A; Shimada N; Yamamoto K; Yamamoto R; Zhou Y; Uchimoto Y; Nakanishi K; Mitsuhara K; Ohara K; Park J; Byon HR; Koga H; Okoshi M; Ohta T; Yabuuchi N
    ACS Cent Sci; 2020 Dec; 6(12):2326-2338. PubMed ID: 33376794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.
    Yabuuchi N; Takeuchi M; Nakayama M; Shiiba H; Ogawa M; Nakayama K; Ohta T; Endo D; Ozaki T; Inamasu T; Sato K; Komaba S
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7650-5. PubMed ID: 26056288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and electrochemical properties of Li(1.3)Nb(0.3)V(0.4)O2 as a positive electrode material for rechargeable lithium batteries.
    Yabuuchi N; Takeuchi M; Komaba S; Ichikawa S; Ozaki T; Inamasu T
    Chem Commun (Camb); 2016 Feb; 52(10):2051-4. PubMed ID: 26686804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Redox-Inactive Transition-Metals in the Behavior of Cation-Disordered Rocksalt Cathodes.
    Chen D; Wu J; Papp JK; McCloskey BD; Yang W; Chen G
    Small; 2020 Jun; 16(22):e2000656. PubMed ID: 32363748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries.
    Zhang X; Qiao Y; Guo S; Jiang K; Xu S; Xu H; Wang P; He P; Zhou H
    Adv Mater; 2019 Jul; 31(27):e1807770. PubMed ID: 31074542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Anionic Redox Stability of P2-Na
    Huang Y; Zhu Y; Nie A; Fu H; Hu Z; Sun X; Haw SC; Chen JM; Chan TS; Yu S; Sun G; Jiang G; Han J; Luo W; Huang Y
    Adv Mater; 2022 Mar; 34(9):e2105404. PubMed ID: 34961966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating and Mitigating the Degradation of Cationic-Anionic Redox Processes in Li
    Zhou K; Zheng S; Liu H; Zhang C; Gao H; Luo M; Xu N; Xiang Y; Liu X; Zhong G; Yang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45674-45682. PubMed ID: 31714058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mn
    Zheng S; Zhou K; Zheng F; Liu H; Zhong G; Zuo W; Xu N; Zhao G; Luo M; Wu J; Zhang C; Zhang Z; Wu S; Yang Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40347-40354. PubMed ID: 32805881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2.
    Kumakura S; Tahara Y; Kubota K; Chihara K; Komaba S
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12760-3. PubMed ID: 27630078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic Redox Reaction.
    Choi G; Lee J; Kim D
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29203-29211. PubMed ID: 32491823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and electrochemical properties of Li
    Wang W; Meng J; Yue X; Wang Q; Wang X; Zhou Y; Yang X; Shadike Z; Fu Z
    Chem Commun (Camb); 2018 Dec; 54(98):13809-13812. PubMed ID: 30457600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.
    Han DW; Ku JH; Kim RH; Yun DJ; Lee SS; Doo SG
    ChemSusChem; 2014 Jul; 7(7):1870-5. PubMed ID: 24797956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron Sulfide Na
    Nasu A; Sakuda A; Kimura T; Deguchi M; Tsuchimoto A; Okubo M; Yamada A; Tatsumisago M; Hayashi A
    Small; 2022 Oct; 18(42):e2203383. PubMed ID: 36122184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Na(Li
    Kim D; Cho M; Cho K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28635039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material Design Concept of Lithium-Excess Electrode Materials with Rocksalt-Related Structures for Rechargeable Non-Aqueous Batteries.
    Yabuuchi N
    Chem Rec; 2019 Apr; 19(4):690-707. PubMed ID: 30311732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-Disordered Lithium-Excess Li-Fe-Ti Oxide Cathode Materials for Enhanced Li-Ion Storage.
    Yang M; Jin J; Shen Y; Sun S; Zhao X; Shen X
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44144-44152. PubMed ID: 31687798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural transformation and electrochemical properties of a nanosized flower-like R-MnO
    Qiu K; Zhang C; Yan M; Zhao S; Fan H; An S; Qiu X; Jia G
    Phys Chem Chem Phys; 2021 Dec; 24(1):551-559. PubMed ID: 34904986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.
    Yabuuchi N; Kajiyama M; Iwatate J; Nishikawa H; Hitomi S; Okuyama R; Usui R; Yamada Y; Komaba S
    Nat Mater; 2012 Apr; 11(6):512-7. PubMed ID: 22543301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.