These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31482689)

  • 1. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia.
    Barbitoff YA; Skitchenko RK; Poleshchuk OI; Shikov AE; Serebryakova EA; Nasykhova YA; Polev DE; Shuvalova AR; Shcherbakova IV; Fedyakov MA; Glotov OS; Glotov AS; Predeus AV
    Mol Genet Genomic Med; 2019 Nov; 7(11):e964. PubMed ID: 31482689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic study of Wilson's disease in the United Kingdom.
    Coffey AJ; Durkie M; Hague S; McLay K; Emmerson J; Lo C; Klaffke S; Joyce CJ; Dhawan A; Hadzic N; Mieli-Vergani G; Kirk R; Elizabeth Allen K; Nicholl D; Wong S; Griffiths W; Smithson S; Giffin N; Taha A; Connolly S; Gillett GT; Tanner S; Bonham J; Sharrack B; Palotie A; Rattray M; Dalton A; Bandmann O
    Brain; 2013 May; 136(Pt 5):1476-87. PubMed ID: 23518715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exome sequencing identifies potential risk variants for Mendelian disorders at high prevalence in Qatar.
    Rodriguez-Flores JL; Fakhro K; Hackett NR; Salit J; Fuller J; Agosto-Perez F; Gharbiah M; Malek JA; Zirie M; Jayyousi A; Badii R; Al-Nabet Al-Marri A; Chouchane L; Stadler DJ; Mezey JG; Crystal RG
    Hum Mutat; 2014 Jan; 35(1):105-16. PubMed ID: 24123366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The global prevalence of Wilson disease from next-generation sequencing data.
    Gao J; Brackley S; Mann JP
    Genet Med; 2019 May; 21(5):1155-1163. PubMed ID: 30254379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson's disease phenotype.
    Kluska A; Kulecka M; Litwin T; Dziezyc K; Balabas A; Piatkowska M; Paziewska A; Dabrowska M; Mikula M; Kaminska D; Wiernicka A; Socha P; Czlonkowska A; Ostrowski J
    Liver Int; 2019 Jan; 39(1):177-186. PubMed ID: 30230192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An expected decrease in the incidence of autosomal recessive disease due to decreasing consanguineous marriages.
    Saito T
    Genet Epidemiol; 1988; 5(6):421-32. PubMed ID: 3209054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence estimation for monogenic autosomal recessive diseases using population-based genetic data.
    Schrodi SJ; DeBarber A; He M; Ye Z; Peissig P; Van Wormer JJ; Haws R; Brilliant MH; Steiner RD
    Hum Genet; 2015 Jun; 134(6):659-69. PubMed ID: 25893794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WES-based screening of 7,000 newborns: A pilot study in Russia.
    Shubina J; Tolmacheva E; Maslennikov D; Kochetkova T; Mukosey I; Sadelov I; Goltsov A; Barkov I; Ekimov A; Rogacheva M; Stupko O; Pavlova N; Kuznetsova M; Dokshukina A; Vasiliev G; Bolshakova A; Kovalskaia V; Korovko A; Pomerantseva E; Tsabai P; Buyanovskaya O; Zaretskaya N; Karetnikova N; Grebenshchikova E; Degtyareva A; Bokerija E; Kholin A; Rebrikov D; Degtyarev D; Trofimov D; Sukhih G
    HGG Adv; 2024 Oct; 5(4):100334. PubMed ID: 39033325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused Exome Sequencing Gives a High Diagnostic Yield in the Indian Subcontinent.
    Duraisamy AJ; Liu R; Sureshkumar S; Rose R; Jagannathan L; da Silva C; Coovadia A; Ramachander V; Chandrasekar S; Raja I; Sajnani M; Selvaraj SM; Narang B; Darvishi K; Bhayal AC; Katikala L; Guo F; Chen-Deutsch X; Balciuniene J; Ma Z; Nallamilli BRR; Bean L; Collins C; Hegde M
    J Mol Diagn; 2024 Jun; 26(6):510-519. PubMed ID: 38582400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Ultra-Rapid Exome Sequencing in Critically Ill Infants and Children With Suspected Monogenic Conditions in the Australian Public Health Care System.
    ; Lunke S; Eggers S; Wilson M; Patel C; Barnett CP; Pinner J; Sandaradura SA; Buckley MF; Krzesinski EI; de Silva MG; Brett GR; Boggs K; Mowat D; Kirk EP; Adès LC; Akesson LS; Amor DJ; Ayres S; Baxendale A; Borrie S; Bray A; Brown NJ; Chan CY; Chong B; Cliffe C; Delatycki MB; Edwards M; Elakis G; Fahey MC; Fennell A; Fowles L; Gallacher L; Higgins M; Howell KB; Hunt L; Hunter MF; Jones KJ; King S; Kumble S; Lang S; Le Moing M; Ma A; Phelan D; Quinn MCJ; Richards A; Richmond CM; Riseley J; Rodgers J; Sachdev R; Sadedin S; Schlapbach LJ; Smith J; Springer A; Tan NB; Tan TY; Temple SL; Theda C; Vasudevan A; White SM; Yeung A; Zhu Y; Martyn M; Best S; Roscioli T; Christodoulou J; Stark Z
    JAMA; 2020 Jun; 323(24):2503-2511. PubMed ID: 32573669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of population's genetic structure on the load size of monogenic hereditary diseases in Russia].
    Zinchenko RA; El'chinova GI; Balanovskaia EV; Nurbaev SD; Ginter EK
    Vestn Ross Akad Med Nauk; 2000; (5):5-11. PubMed ID: 10881655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the clinical utility of exome sequencing/Mono, Duo, Trio in prenatal testing: a retrospective study in a tertiary care centre in South India.
    Ilangovan H; Elangovan J; Danda S; Beck MM; Navaneethan P; Athiyarath R
    J Perinat Med; 2024 Jun; 52(5):520-529. PubMed ID: 38709224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier frequency of Wilson's disease in the Korean population: a DNA-based approach.
    Jang JH; Lee T; Bang S; Kim YE; Cho EH
    J Hum Genet; 2017 Sep; 62(9):815-818. PubMed ID: 28515472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAPIDOMICS: rapid genome-wide sequencing in a neonatal intensive care unit-successes and challenges.
    Elliott AM; du Souich C; Lehman A; Guella I; Evans DM; Candido T; Tooman L; Armstrong L; Clarke L; Gibson W; Gill H; Lavoie PM; Lewis S; McKinnon ML; Nikkel SM; Patel M; Solimano A; Synnes A; Ting J; van Allen M; Christilaw J; Farrer MJ; Friedman JM; Osiovich H
    Eur J Pediatr; 2019 Aug; 178(8):1207-1218. PubMed ID: 31172278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using high-resolution variant frequencies to empower clinical genome interpretation.
    Whiffin N; Minikel E; Walsh R; O'Donnell-Luria AH; Karczewski K; Ing AY; Barton PJR; Funke B; Cook SA; MacArthur D; Ware JS
    Genet Med; 2017 Oct; 19(10):1151-1158. PubMed ID: 28518168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Carrier Frequency of Actionable Pathogenic Variants in Autosomal Recessive Genetic Diseases in the Turkish Cypriot Population.
    Gunsel AS; Ergoren MC; Kemal H; Kafshboran HR; Cerit L; Turgay A; Duygu H
    Genes (Basel); 2023 Oct; 14(10):. PubMed ID: 37895316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The promise and peril of genomic screening in the general population.
    Adams MC; Evans JP; Henderson GE; Berg JS
    Genet Med; 2016 Jun; 18(6):593-9. PubMed ID: 26540154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A community-based resource for automatic exome variant-calling and annotation in Mendelian disorders.
    Mutarelli M; Marwah V; Rispoli R; Carrella D; Dharmalingam G; Oliva G; di Bernardo D
    BMC Genomics; 2014; 15 Suppl 3(Suppl 3):S5. PubMed ID: 25078076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels.
    LaDuca H; Farwell KD; Vuong H; Lu HM; Mu W; Shahmirzadi L; Tang S; Chen J; Bhide S; Chao EC
    PLoS One; 2017; 12(2):e0170843. PubMed ID: 28152038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond screening for chromosomal abnormalities: Advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing.
    Hayward J; Chitty LS
    Semin Fetal Neonatal Med; 2018 Apr; 23(2):94-101. PubMed ID: 29305293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.