BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31483224)

  • 21. Confocal imaging of glutathione redox potential in living plant cells.
    Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ
    J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge.
    Schwarzländer M; Fricker MD; Sweetlove LJ
    Biochim Biophys Acta; 2009 May; 1787(5):468-75. PubMed ID: 19366606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.
    Banach-Latapy A; He T; Dardalhon M; Vernis L; Chanet R; Huang ME
    Free Radic Biol Med; 2013 Dec; 65():436-445. PubMed ID: 23891676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction.
    Geissel F; Lang L; Husemann B; Morgan B; Deponte M
    Nat Commun; 2024 Feb; 15(1):1733. PubMed ID: 38409212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.
    Tung QN; Linzner N; Loi VV; Antelmann H
    Free Radic Biol Med; 2018 Nov; 128():84-96. PubMed ID: 29454879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione redox state plays a key role in flower development and pollen vigour.
    García-Quirós E; Alché JD; Karpinska B; Foyer CH
    J Exp Bot; 2020 Jan; 71(2):730-741. PubMed ID: 31557297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fruit Exocarp Phenols in Relation to Quiescence and Development of Monilinia fructicola Infections in Prunus spp.: A Role for Cellular Redox?
    Lee MH; Bostock RM
    Phytopathology; 2007 Mar; 97(3):269-77. PubMed ID: 18943645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient light-induced intracellular oxidation revealed by redox biosensor.
    Kolossov VL; Beaudoin JN; Hanafin WP; DiLiberto SJ; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2013 Oct; 439(4):517-21. PubMed ID: 24025674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells.
    Staudacher V; Trujillo M; Diederichs T; Dick TP; Radi R; Morgan B; Deponte M
    Redox Biol; 2018 Apr; 14():549-556. PubMed ID: 29128826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.
    Marschall R; Schumacher J; Siegmund U; Tudzynski P
    Fungal Genet Biol; 2016 May; 90():12-22. PubMed ID: 26988904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-sensitive GFP2: use of the genetically encoded biosensor of the redox status in the filamentous fungus Botrytis cinerea.
    Heller J; Meyer AJ; Tudzynski P
    Mol Plant Pathol; 2012 Oct; 13(8):935-47. PubMed ID: 22524254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice.
    Swain L; Kesemeyer A; Meyer-Roxlau S; Vettel C; Zieseniss A; Güntsch A; Jatho A; Becker A; Nanadikar MS; Morgan B; Dennerlein S; Shah AM; El-Armouche A; Nikolaev VO; Katschinski DM
    Circ Res; 2016 Oct; 119(9):1004-1016. PubMed ID: 27553648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo imaging of H2O2 production in Drosophila.
    Barata AG; Dick TP
    Methods Enzymol; 2013; 526():61-82. PubMed ID: 23791094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.
    Gibbs-Flournoy EA; Simmons SO; Bromberg PA; Dick TP; Samet JM
    Environ Health Perspect; 2013 Mar; 121(3):312-7. PubMed ID: 23249900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rethreading Design of Ratiometric roGFP2 Mimetic Peptide for Hydrogen Peroxide Sensing.
    Kong J; Hu J; Li J; Zhang J; Shen Y; Yue T; Shen X; Wang Y; Li Z; Xia Y
    Anal Chem; 2023 May; 95(21):8284-8290. PubMed ID: 37161261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum.
    Schuh AK; Rahbari M; Heimsch KC; Mohring F; Gabryszewski SJ; Weder S; Buchholz K; Rahlfs S; Fidock DA; Becker K
    ACS Infect Dis; 2018 Nov; 4(11):1601-1612. PubMed ID: 30129748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slowly Reducible Genetically Encoded Green Fluorescent Indicator for In Vivo and Ex Vivo Visualization of Hydrogen Peroxide.
    Subach OM; Kunitsyna TA; Mineyeva OA; Lazutkin AA; Bezryadnov DV; Barykina NV; Piatkevich KD; Ermakova YG; Bilan DS; Belousov VV; Anokhin KV; Enikolopov GN; Subach FV
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31252566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetically encoded fluorescent redox sensors.
    Lukyanov KA; Belousov VV
    Biochim Biophys Acta; 2014 Feb; 1840(2):745-56. PubMed ID: 23726987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator.
    Katsalifis A; Casaril AM; Depp C; Bas-Orth C
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of Redox-Sensitive GFP Cysteine Redox State via Gel-Based Read-Out.
    Bohle F; Meyer AJ; Mueller-Schuessele SJ
    Methods Mol Biol; 2023; 2564():259-268. PubMed ID: 36107347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.