BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31483404)

  • 1. Raman Biomarkers Are Associated with Cyclic Fatigue Life of Human Allograft Cortical Bone.
    Du JY; Flanagan CD; Bensusan JS; Knusel KD; Akkus O; Rimnac CM
    J Bone Joint Surg Am; 2019 Sep; 101(17):e85. PubMed ID: 31483404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The High-cycle Fatigue Life of Cortical Bone Allografts Is Radiation Sterilization Dose-dependent: An In Vitro Study.
    Ina J; Vakharia A; Akkus O; Rimnac CM
    Clin Orthop Relat Res; 2022 Jun; 480(6):1208-1219. PubMed ID: 35175232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.
    Flanagan CD; Unal M; Akkus O; Rimnac CM
    J Mech Behav Biomed Mater; 2017 Nov; 75():314-321. PubMed ID: 28772165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone.
    Unal M; Akkus O
    Bone; 2015 Dec; 81():315-326. PubMed ID: 26211992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
    Islam A; Chapin K; Moore E; Ford J; Rimnac C; Akkus O
    Clin Orthop Relat Res; 2016 Mar; 474(3):827-35. PubMed ID: 26463571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrelationships between electrical, mechanical and hydration properties of cortical bone.
    Unal M; Cingoz F; Bagcioglu C; Sozer Y; Akkus O
    J Mech Behav Biomed Mater; 2018 Jan; 77():12-23. PubMed ID: 28888142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone.
    Makowski AJ; Granke M; Ayala OD; Uppuganti S; Mahadevan-Jansen A; Nyman JS
    Appl Spectrosc; 2017 Oct; 71(10):2385-2394. PubMed ID: 28708001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent.
    Crocker DB; Hoffman I; Carter JLW; Akkus O; Rimnac CM
    J Orthop Res; 2023 Apr; 41(4):823-833. PubMed ID: 35949192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of donor variables and graft dimension on biomechanical performance of femoral ring allograft.
    Hart RA; Daniels AH; Bahney T; Tesar J; Sales JR; Bay B
    J Orthop Res; 2011 Dec; 29(12):1840-5. PubMed ID: 21590719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near infrared spectroscopic assessment of loosely and tightly bound cortical bone water.
    Ailavajhala R; Querido W; Rajapakse CS; Pleshko N
    Analyst; 2020 May; 145(10):3713-3724. PubMed ID: 32342066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue.
    Akkus O; Belaney RM; Das P
    J Orthop Res; 2005 Jul; 23(4):838-45. PubMed ID: 16022998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribose pre-treatment can protect the fatigue life of γ-irradiation sterilized bone.
    Attia T; Grynpas M; Willett T
    Cell Tissue Bank; 2019 Jun; 20(2):287-295. PubMed ID: 31020508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors.
    Nyman JS; Gorochow LE; Adam Horch R; Uppuganti S; Zein-Sabatto A; Manhard MK; Does MD
    J Mech Behav Biomed Mater; 2013 Jun; 22():136-45. PubMed ID: 23631897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations.
    Gauthier R; Follet H; Langer M; Gineyts E; Rongiéras F; Peyrin F; Mitton D
    Bone; 2018 Jul; 112():202-211. PubMed ID: 29730278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic determination of bone matrix quantity and quality augments prediction of human cortical bone mechanical properties.
    Unal M
    J Biomech; 2021 Apr; 119():110342. PubMed ID: 33706105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging of microstructural compartments in human compact bone.
    Akkus O; Polyakova-Akkus A; Adar F; Schaffler MB
    J Bone Miner Res; 2003 Jun; 18(6):1012-9. PubMed ID: 12817753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity.
    Oppenheimer-Velez ML; Giambini H; Rezaei A; Camp JJ; Khosla S; Lu L
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():73-78. PubMed ID: 29698852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of local ultimate strain and toughness of trabecular bone tissue by Raman material composition analysis.
    Carretta R; Stüssi E; Müller R; Lorenzetti S
    Biomed Res Int; 2015; 2015():457371. PubMed ID: 25695083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.