These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Fabrication of Microelectrodes, Suction Electrodes, and Focal Electrodes for Electrophysiological Recording in Zhang B; Stewart B Cold Spring Harb Protoc; 2024 Mar; ():. PubMed ID: 38519091 [TBL] [Abstract][Full Text] [Related]
7. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Abbott J; Ye T; Ham D; Park H Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381 [TBL] [Abstract][Full Text] [Related]
8. Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array. Hu N; Xu D; Fang J; Li H; Mo J; Zhou M; Li B; Chen HJ; Zhang T; Feng J; Hang T; Xia W; Chen X; Liu X; He G; Xie X Biosens Bioelectron; 2020 Dec; 169():112588. PubMed ID: 32956905 [TBL] [Abstract][Full Text] [Related]
12. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Liu Y; McGuire AF; Lou HY; Li TL; Tok JB; Cui B; Bao Z Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11718-11723. PubMed ID: 30377271 [TBL] [Abstract][Full Text] [Related]
13. Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays. Desbiolles BXE; de Coulon E; Bertsch A; Rohr S; Renaud P Nano Lett; 2019 Sep; 19(9):6173-6181. PubMed ID: 31424942 [TBL] [Abstract][Full Text] [Related]
14. Multi-electrode array technologies for neuroscience and cardiology. Spira ME; Hai A Nat Nanotechnol; 2013 Feb; 8(2):83-94. PubMed ID: 23380931 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. Baranyi A; Szente MB; Woody CD J Neurophysiol; 1993 Jun; 69(6):1865-79. PubMed ID: 8350127 [TBL] [Abstract][Full Text] [Related]
16. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. Staley KJ; Otis TS; Mody I J Neurophysiol; 1992 May; 67(5):1346-58. PubMed ID: 1597717 [TBL] [Abstract][Full Text] [Related]
17. Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Clerc N; Furness JB; Bornstein JC; Kunze WA Neuroscience; 1998 Feb; 82(3):899-914. PubMed ID: 9483544 [TBL] [Abstract][Full Text] [Related]
18. Porous Polyethylene Terephthalate Nanotemplate Electrodes for Sensitive Intracellular Recording of Action Potentials. Xu D; Fang J; Zhang M; Xia Q; Li H; Hu N Nano Lett; 2022 Mar; 22(6):2479-2489. PubMed ID: 35254073 [TBL] [Abstract][Full Text] [Related]
19. Scalable Nanotrap Matrix Enhanced Electroporation for Intracellular Recording of Action Potential. Xu D; Fang J; Wang H; Wei X; Yang J; Li H; Yang T; Li Y; Liu C; Hu N Nano Lett; 2022 Sep; 22(18):7467-7476. PubMed ID: 36069674 [TBL] [Abstract][Full Text] [Related]
20. Mirroring Action Potentials: Label-Free, Accurate, and Noninvasive Electrophysiological Recordings of Human-Derived Cardiomyocytes. Barbaglia A; Dipalo M; Melle G; Iachetta G; Deleye L; Hubarevich A; Toma A; Tantussi F; De Angelis F Adv Mater; 2021 Feb; 33(7):e2004234. PubMed ID: 33410191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]