These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31483763)

  • 1. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
    Neubrech F; Huck C; Weber K; Pucci A; Giessen H
    Chem Rev; 2017 Apr; 117(7):5110-5145. PubMed ID: 28358482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanonails for surface-enhanced infrared absorption.
    Yin H; Li N; Si Y; Zhang H; Yang B; Wang J
    Nanoscale Horiz; 2020 Jul; 5(8):1200-1212. PubMed ID: 32578657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA).
    Brown LV; Yang X; Zhao K; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1272-80. PubMed ID: 25565006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules.
    Milekhin AG; Cherkasova O; Kuznetsov SA; Milekhin IA; Rodyakina EE; Latyshev AV; Banerjee S; Salvan G; Zahn DRT
    Beilstein J Nanotechnol; 2017; 8():975-981. PubMed ID: 28546892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars.
    Bibikova O; Haas J; López-Lorente AI; Popov A; Kinnunen M; Meglinski I; Mizaikoff B
    Analyst; 2017 Mar; 142(6):951-958. PubMed ID: 28229133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Chemical Sensing Platform Based on Dual-Resonant Infrared Plasmonic Perfect Absorber for On-Chip Detection of Poly(ethyl cyanoacrylate).
    Li D; Zhou H; Hui X; He X; Huang H; Zhang J; Mu X; Lee C; Yang Y
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101879. PubMed ID: 34423591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.
    Chen K; Duy Dao T; Nagao T
    Sci Rep; 2017 Mar; 7():44069. PubMed ID: 28272442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over-coupled resonator for broadband surface enhanced infrared absorption (SEIRA).
    Paggi L; Fabas A; El Ouazzani H; Hugonin JP; Fayard N; Bardou N; Dupuis C; Greffet JJ; Bouchon P
    Nat Commun; 2023 Aug; 14(1):4814. PubMed ID: 37558692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption.
    Giordano MC; Tzschoppe M; Barelli M; Vogt J; Huck C; Canepa F; Pucci A; Buatier de Mongeot F
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11155-11162. PubMed ID: 32049480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Following the Chemical Immobilization of Membrane Proteins on Plasmonic Nanoantennas Using Infrared Spectroscopy.
    Omeis F; Santos Seica AF; Bernard R; Javahiraly N; Majjad H; Moss D; Hellwig P
    ACS Sens; 2020 Jul; 5(7):2191-2197. PubMed ID: 32586089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion-based intertwined SEIRA and SPR effect detection of 2,4-dinitrotoluene using a plasmonic metasurface.
    Fabas A; El Ouazzani H; Hugonin JP; Dupuis C; Haidar R; Greffet JJ; Bouchon P
    Opt Express; 2020 Dec; 28(26):39595-39605. PubMed ID: 33379505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
    Ishikawa A; Hara S; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2017 Jun; 7(1):3205. PubMed ID: 28600570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Concentrations of Mixed Sugar Solutions with a Combination of Resonant Plasmon-Enhanced SEIRA and Principal Component Analysis.
    Pfezer D; Karst J; Hentschel M; Giessen H
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.