These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31483763)

  • 41. Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy.
    Mohr DA; Yoo D; Chen C; Li M; Oh SH
    Opt Express; 2018 Sep; 26(18):23540-23549. PubMed ID: 30184853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cavity resonances of metal-dielectric-metal nanoantennas.
    Joshi BP; Wei QH
    Opt Express; 2008 Jul; 16(14):10315-22. PubMed ID: 18607441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator.
    Wen C; Luo J; Xu W; Zhu Z; Qin S; Zhang J
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmonic Sensing Characteristics of Gold Nanorods with Large Aspect Ratios.
    Zhuang C; Xu Y; Xu N; Wen J; Chen H; Deng S
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30326557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots.
    Zhang N; Liu YJ; Yang J; Su X; Deng J; Chum CC; Hong M; Teng J
    Nanoscale; 2014; 6(3):1416-22. PubMed ID: 24311121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties.
    Brown LV; Zhao K; King N; Sobhani H; Nordlander P; Halas NJ
    J Am Chem Soc; 2013 Mar; 135(9):3688-95. PubMed ID: 23402592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.
    Bukasov R; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4531-5. PubMed ID: 19408957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas.
    Alsayed AE; Ghanim AM; Yahia A; Swillam MA
    Sci Rep; 2023 Apr; 13(1):5793. PubMed ID: 37031268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
    Neubrech F; Pucci A; Cornelius TW; Karim S; García-Etxarri A; Aizpurua J
    Phys Rev Lett; 2008 Oct; 101(15):157403. PubMed ID: 18999639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-Enhanced Infrared Absorption of Ligands on Colloidal Gold Nanowires through Resonant Coupling.
    Wang D; Wang X; Lin H; Wang B; Jiang J; Li Z
    Anal Chem; 2020 Mar; 92(5):3494-3498. PubMed ID: 31939283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures.
    Dregely D; Neubrech F; Duan H; Vogelgesang R; Giessen H
    Nat Commun; 2013; 4():2237. PubMed ID: 23892519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy.
    Gao Y; Aspnes DE; Franzen S
    J Phys Chem A; 2022 Jan; 126(2):341-351. PubMed ID: 35005959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration.
    Li D; Xu C; Xie J; Lee C
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface Enhanced Infrared Absorption Using Single Conducting Polymer Antennas.
    Li X; Zhu S; Zhu G; Wang J; Ding Y; Du W; Wang T
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14357-14363. PubMed ID: 38440977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
    Guo X; Hu H; Liao B; Zhu X; Yang X; Dai Q
    Nanotechnology; 2018 May; 29(18):184004. PubMed ID: 29457777
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of native charge-transfer status of p-aminothiolphenol adsorbed on noble metallic substrates by surface-enhanced infrared absorption (SEIRA) spectroscopy.
    Li Q; Wang Y; Li Y; Park Y; Chen Y; Wang X; Zhao B; Ruan W; Jung YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():532-536. PubMed ID: 29975915
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas.
    Xomalis A; Zheng X; Chikkaraddy R; Koczor-Benda Z; Miele E; Rosta E; Vandenbosch GAE; Martínez A; Baumberg JJ
    Science; 2021 Dec; 374(6572):1268-1271. PubMed ID: 34855505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.