These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 31483837)
1. Expression of sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 in malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model. Punsawad C; Viriyavejakul P PLoS One; 2019; 14(9):e0222098. PubMed ID: 31483837 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of Sphingosine Kinase-1 and Sphingosine-1-Phosphate Receptor-3 in Severe Viriyavejakul P; Punsawad C Biomed Res Int; 2020; 2020():3932569. PubMed ID: 32185202 [TBL] [Abstract][Full Text] [Related]
3. Association of Heme Oxygenase 1 with Lung Protection in Malaria-Associated ALI/ARDS. Pereira ML; Ortolan LS; Sercundes MK; Debone D; Murillo O; Lima FA; Marinho CR; Epiphanio S Mediators Inflamm; 2016; 2016():4158698. PubMed ID: 27974865 [TBL] [Abstract][Full Text] [Related]
4. Role of sphingosine kinase and sphingosine-1-phosphate receptor in the liver pathology of mice infected with Plasmodium berghei ANKA. Techarang T; Jariyapong P; Punsawad C PLoS One; 2022; 17(3):e0266055. PubMed ID: 35333897 [TBL] [Abstract][Full Text] [Related]
5. Surfactant Protein D Is Altered in Experimental Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome. Punsawad C; Viriyavejakul P; Techarang T J Trop Med; 2019; 2019():9281605. PubMed ID: 31467567 [TBL] [Abstract][Full Text] [Related]
6. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome. Scaccabarozzi D; Deroost K; Lays N; Omodeo Salè F; Van den Steen PE; Taramelli D PLoS One; 2015; 10(12):e0143195. PubMed ID: 26624290 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory effect of circulating fibrocytes on injury repair in acute lung injury/acute respiratory distress syndrome mice model. Tai W; Zhou Z; Zheng B; Li J; Ding J; Wu H; Gao L; Dong Z J Cell Biochem; 2018 Nov; 119(10):7982-7990. PubMed ID: 29323734 [TBL] [Abstract][Full Text] [Related]
9. Role of cuproptosis in mediating the severity of experimental malaria-associated acute lung injury/acute respiratory distress syndrome. Hou X; Zhou T; Wang Q; Chen P; Zhang M; Wu L; Liu W; Jin X; Liu Z; Li H; Huang B Parasit Vectors; 2024 Oct; 17(1):433. PubMed ID: 39427197 [TBL] [Abstract][Full Text] [Related]
10. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice. Sercundes MK; Ortolan LS; Debone D; Soeiro-Pereira PV; Gomes E; Aitken EH; Condino-Neto A; Russo M; D' Império Lima MR; Alvarez JM; Portugal S; Marinho CR; Epiphanio S PLoS Pathog; 2016 Dec; 12(12):e1006054. PubMed ID: 27926944 [TBL] [Abstract][Full Text] [Related]
11. High mobility group box-1 (HMGB-1) and its receptors in the pathogenesis of malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model. Techarang T; Jariyapong P; Viriyavejakul P; Punsawad C Heliyon; 2021 Dec; 7(12):e08589. PubMed ID: 34977410 [TBL] [Abstract][Full Text] [Related]
12. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Pereira MLM; Marinho CRF; Epiphanio S Front Cell Infect Microbiol; 2018; 8():161. PubMed ID: 29868517 [TBL] [Abstract][Full Text] [Related]
13. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Sukocheva OA; Furuya H; Ng ML; Friedemann M; Menschikowski M; Tarasov VV; Chubarev VN; Klochkov SG; Neganova ME; Mangoni AA; Aliev G; Bishayee A Pharmacol Ther; 2020 Mar; 207():107464. PubMed ID: 31863815 [TBL] [Abstract][Full Text] [Related]
15. Experimental malaria-associated acute respiratory distress syndrome is dependent on the parasite-host combination and coincides with normocyte invasion. Vandermosten L; Pham TT; Possemiers H; Knoops S; Van Herck E; Deckers J; Franke-Fayard B; Lamb TJ; Janse CJ; Opdenakker G; Van den Steen PE Malar J; 2018 Mar; 17(1):102. PubMed ID: 29506544 [TBL] [Abstract][Full Text] [Related]
16. Endothelial Protein C Receptor Could Contribute to Experimental Malaria-Associated Acute Respiratory Distress Syndrome. Dos Santos Ortolan L; Sercundes MK; Moura GC; de Castro Quirino T; Debone D; de Sousa Costa D; Murillo O; Marinho CRF; Epiphanio S J Immunol Res; 2019; 2019():3105817. PubMed ID: 31871954 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic analysis of lung tissues after hUC-MSCs and FTY720 treatment of lipopolysaccharide-induced acute lung injury in mouse models. Huang Z; Liu H; Zhang X; Wen G; Zhu C; Zhao Y; Niu W; Qin Y; Chen H; Bai C; Liu G Int Immunopharmacol; 2018 Oct; 63():26-34. PubMed ID: 30064040 [TBL] [Abstract][Full Text] [Related]
18. Activin-A overexpression in the murine lung causes pathology that simulates acute respiratory distress syndrome. Apostolou E; Stavropoulos A; Sountoulidis A; Xirakia C; Giaglis S; Protopapadakis E; Ritis K; Mentzelopoulos S; Pasternack A; Foster M; Ritvos O; Tzelepis GE; Andreakos E; Sideras P Am J Respir Crit Care Med; 2012 Feb; 185(4):382-91. PubMed ID: 22161160 [TBL] [Abstract][Full Text] [Related]
19. Predictive criteria to study the pathogenesis of malaria-associated ALI/ARDS in mice. Ortolan LS; Sercundes MK; Barboza R; Debone D; Murillo O; Hagen SC; Russo M; D' Império Lima MR; Alvarez JM; Amaku M; Marinho CR; Epiphanio S Mediators Inflamm; 2014; 2014():872464. PubMed ID: 25276057 [TBL] [Abstract][Full Text] [Related]
20. p300 promotes differentiation of Th17 cells via positive regulation of the nuclear transcription factor RORγt in acute respiratory distress syndrome. Chen Y; Wang D; Zhao Y; Huang B; Cao H; Qi D Immunol Lett; 2018 Oct; 202():8-15. PubMed ID: 30009847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]