These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 31484070)
1. Wnd/DLK Is a Critical Target of FMRP Responsible for Neurodevelopmental and Behavior Defects in the Drosophila Model of Fragile X Syndrome. Russo A; DiAntonio A Cell Rep; 2019 Sep; 28(10):2581-2593.e5. PubMed ID: 31484070 [TBL] [Abstract][Full Text] [Related]
2. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth. Wu C; Daniels RW; DiAntonio A Neural Dev; 2007 Aug; 2():16. PubMed ID: 17697379 [TBL] [Abstract][Full Text] [Related]
3. MiR-315 is required for neural development and represses the expression of dFMR1 in Drosophila melanogaster. Yuan L; Ren X; Zheng Y; Qian J; Xu L; Sun M Biochem Biophys Res Commun; 2020 Apr; 525(2):469-476. PubMed ID: 32107003 [TBL] [Abstract][Full Text] [Related]
4. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Siller SS; Broadie K Dis Model Mech; 2011 Sep; 4(5):673-85. PubMed ID: 21669931 [TBL] [Abstract][Full Text] [Related]
5. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Coffee RL; Williamson AJ; Adkins CM; Gray MC; Page TL; Broadie K Hum Mol Genet; 2012 Feb; 21(4):900-15. PubMed ID: 22080836 [TBL] [Abstract][Full Text] [Related]
6. MiR-219 represses expression of dFMR1 in Drosophila melanogaster. Wang C; Ge L; Wu J; Wang X; Yuan L Life Sci; 2019 Feb; 218():31-37. PubMed ID: 30528775 [TBL] [Abstract][Full Text] [Related]
7. Hyperactive locomotion in a Kashima R; Redmond PL; Ghatpande P; Roy S; Kornberg TB; Hanke T; Knapp S; Lagna G; Hata A Sci Signal; 2017 May; 10(477):. PubMed ID: 28465421 [TBL] [Abstract][Full Text] [Related]
8. Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. Coffee RL; Tessier CR; Woodruff EA; Broadie K Dis Model Mech; 2010; 3(7-8):471-85. PubMed ID: 20442204 [TBL] [Abstract][Full Text] [Related]
9. Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Gatto CL; Broadie K Development; 2008 Aug; 135(15):2637-48. PubMed ID: 18579676 [TBL] [Abstract][Full Text] [Related]
14. ESCRT-III Membrane Trafficking Misregulation Contributes To Fragile X Syndrome Synaptic Defects. Vita DJ; Broadie K Sci Rep; 2017 Aug; 7(1):8683. PubMed ID: 28819289 [TBL] [Abstract][Full Text] [Related]
15. Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period. Golovin RM; Vest J; Broadie K J Neurosci; 2021 Feb; 41(6):1218-1241. PubMed ID: 33402421 [TBL] [Abstract][Full Text] [Related]
16. Bisphenol F affects neurodevelopmental gene expression, mushroom body development, and behavior in Drosophila melanogaster. Fishburn JLA; Larson HL; Nguyen A; Welch CJ; Moore T; Penn A; Newman J; Mangino A; Widman E; Ghobashy R; Witherspoon J; Lee W; Mulligan KA Neurotoxicol Teratol; 2024; 102():107331. PubMed ID: 38301979 [TBL] [Abstract][Full Text] [Related]
17. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. Kennedy T; Rinker D; Broadie K BMC Biol; 2020 Jul; 18(1):94. PubMed ID: 32731855 [TBL] [Abstract][Full Text] [Related]
18. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Myrick LK; Deng PY; Hashimoto H; Oh YM; Cho Y; Poidevin MJ; Suhl JA; Visootsak J; Cavalli V; Jin P; Cheng X; Warren ST; Klyachko VA Proc Natl Acad Sci U S A; 2015 Jan; 112(4):949-56. PubMed ID: 25561520 [TBL] [Abstract][Full Text] [Related]
19. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. Klinedinst S; Wang X; Xiong X; Haenfler JM; Collins CA J Neurosci; 2013 Jul; 33(31):12764-78. PubMed ID: 23904612 [TBL] [Abstract][Full Text] [Related]
20. The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. Sofola O; Sundram V; Ng F; Kleyner Y; Morales J; Botas J; Jackson FR; Nelson DL J Neurosci; 2008 Oct; 28(41):10200-5. PubMed ID: 18842880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]