BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31484148)

  • 21. Trajectory tracking controller of a robotized arm with joint constraints, a direct adaptive gain with state limitations approach.
    Hernandez-Sanchez A; Chairez I; Matehuala-Moran I; Alfaro-Ponce M; Molina A
    ISA Trans; 2023 Oct; 141():276-287. PubMed ID: 37507326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion.
    Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An inertial neural network approach for loco-manipulation trajectory tracking of mobile robot with redundant manipulator.
    Xu C; Wang M; Chi G; Liu Q
    Neural Netw; 2022 Nov; 155():215-223. PubMed ID: 36067552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Event-Sampled Output Feedback Control of Robot Manipulators Using Neural Networks.
    Narayanan V; Jagannathan S; Ramkumar K
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1651-1658. PubMed ID: 30334772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users.
    Rathore A; Wilcox M; Ramirez DZ; Loureiro R; Carlson T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():586-589. PubMed ID: 28268398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; García GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support.
    Li G; Li Z; Su CY; Xu T
    IEEE Trans Cybern; 2023 Nov; 53(11):7367-7379. PubMed ID: 37030717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Adaptive and Hybrid End-Point/Joint Impedance Controller for Lower Limb Exoskeletons.
    Maggioni S; Reinert N; Lünenburger L; Melendez-Calderon A
    Front Robot AI; 2018; 5():104. PubMed ID: 33500983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-level controller for robot-assisted rehabilitation.
    Erol D; Sarkar N; Halder B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3234-7. PubMed ID: 17946169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm.
    Głowiński S; Błażejewski A
    Acta Bioeng Biomech; 2019; 21(1):45-53. PubMed ID: 31197289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human-robot planar co-manipulation of extended objects: data-driven models and control from human-human dyads.
    Mielke E; Townsend E; Wingate D; Salmon JL; Killpack MD
    Front Neurorobot; 2024; 18():1291694. PubMed ID: 38410142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Admittance control of an upper limb exoskeleton--reduction of energy exchange.
    Kim H; Miller LM; Li Z; Roldan JR; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6467-70. PubMed ID: 23367410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impedance-Based Gaussian Processes for Modeling Human Motor Behavior in Physical and Non-Physical Interaction.
    Medina JR; Borner H; Endo S; Hirche S
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2499-2511. PubMed ID: 30605092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection.
    Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS
    Front Robot AI; 2021; 8():706558. PubMed ID: 34395538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal Robot-Environment Interaction Under Broad Fuzzy Neural Adaptive Control.
    Huang H; Yang C; Chen CLP
    IEEE Trans Cybern; 2021 Jul; 51(7):3824-3835. PubMed ID: 32568718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.