These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31484148)

  • 41. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On adaptive trajectory tracking of a robot manipulator using inversion of its neural emulator.
    Behera L; Gopal M; Chaudhury S
    IEEE Trans Neural Netw; 1996; 7(6):1401-14. PubMed ID: 18263534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance.
    Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A New Design Scheme for Intelligent Upper Limb Rehabilitation Training Robot.
    Zhao Y; Liang C; Gu Z; Zheng Y; Wu Q
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation.
    Wang J; Liu J; Zhang G; Guo S
    ISA Trans; 2022 Apr; 123():87-97. PubMed ID: 34217496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Optimization-Based Locomotion Controller for Quadruped Robots Leveraging Cartesian Impedance Control.
    Xin G; Wolfslag W; Lin HC; Tiseo C; Mistry M
    Front Robot AI; 2020; 7():48. PubMed ID: 33501216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental validation of manipulability optimization control of a 7-DoF serial manipulator for robot-assisted surgery.
    Su H; Danioni A; Mira RM; Ungari M; Zhou X; Li J; Hu Y; Ferrigno G; De Momi E
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 33113264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing Physical Human-Robot Interaction with Spring-and Elastomer-Based Series Elastic Actuators.
    Jarrett C; McDaid AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1697-1700. PubMed ID: 30440722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating anatomical wrist joint motion with a robotic exoskeleton.
    Rose CG; Kann CK; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1437-1442. PubMed ID: 28814022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
    Su H; Hu Y; Karimi HR; Knoll A; Ferrigno G; De Momi E
    Neural Netw; 2020 Nov; 131():291-299. PubMed ID: 32841835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.