These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3148416)

  • 21. [Isolation and identification of bacteria lytic against Streptococcus sanguis from dental plaque of young children].
    Tsukamoto K
    Kanagawa Shigaku; 1988 Sep; 23(2):235-44. PubMed ID: 3269906
    [No Abstract]   [Full Text] [Related]  

  • 22. Lysis of Streptococcus sanguis by an extracellular enzyme from the bacterium Streptococcus mutans from human dental plaque.
    Baba H
    Arch Oral Biol; 1986; 31(12):849-53. PubMed ID: 3479961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrelationships between lactobacilli and streptococci in plaque formation on a tooth in an artificial mouth.
    Russell C; Ahmed FI
    J Appl Bacteriol; 1978 Dec; 45(3):373-82. PubMed ID: 32164
    [No Abstract]   [Full Text] [Related]  

  • 24. Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus spp. at sub-sites from approximal dental plaque from children.
    Babaahmady KG; Challacombe SJ; Marsh PD; Newman HN
    Caries Res; 1998; 32(1):51-8. PubMed ID: 9438572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antagonistic substances produced by streptococci from human dental plaque and their significance in plaque ecology.
    Weerkamp A; Vogels GD; Skotnicki M
    Caries Res; 1977; 11(5):245-56. PubMed ID: 267511
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction of inflammatory cells and oral bacteria: release of lysosomal hydrolases from rabbit polymorphonuclear leukocytes exposed to gram-positive plaque bacteria.
    Taichman NS; McArthur WP
    Arch Oral Biol; 1976; 21(4):257-63. PubMed ID: 1068661
    [No Abstract]   [Full Text] [Related]  

  • 27. Surface properties and Streptococcus mutans - Streptococcus sanguinis adhesion of fluorotic enamel.
    Hu D; Gong J; He B; Chen Z; Li M
    Arch Oral Biol; 2021 Jan; 121():104970. PubMed ID: 33202357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Streptococcal adherence to uncoated and saliva-coated restoratives.
    Satou J; Fukunaga A; Morikawa A; Matsumae I; Satou N; Shintani H
    J Oral Rehabil; 1991 Sep; 18(5):421-9. PubMed ID: 1839312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of bacterial interactions in the colonization of oral surfaces of Actinomyces viscosus.
    Kuramitsu HK; Paul A
    Infect Immun; 1980 Jul; 29(1):83-90. PubMed ID: 6772577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of accumulation of oral gram-positive bacteria on mucin-conditioned glass surfaces in a model system.
    Li YH; Bowden GH
    Oral Microbiol Immunol; 1994 Feb; 9(1):1-11. PubMed ID: 7478748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adherence of Streptococcus sanguis clinical isolates to smooth surfaces and interactions of the isolates with Streptococcus mutans glucosyltransferase.
    Hamada S; Torii M; Kotani S; Tsuchitani Y
    Infect Immun; 1981 Apr; 32(1):364-72. PubMed ID: 6452415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cohesion between oral streptococci and Neisseria pharyngis on saliva-coated glass, in the presence and absence of sucrose.
    Willcox MD; Drucker DB; Hillier VF
    Microbios; 1990; 61(248-249):197-205. PubMed ID: 2329945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cariogenicity of human oral lactobacilli in hamsters.
    Fitzgerald RJ; Fitzgerald DB; Adams BO; Duany LF
    J Dent Res; 1980 May; 59(5):832-7. PubMed ID: 6767764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilization of a continuous streptococcal surface to measure interbacterial adherence in vitro and in vivo.
    Liljemark WF; Bloomquist CG; Coulter MC; Fenner LJ; Skopek RJ; Schachtele CF
    J Dent Res; 1988 Dec; 67(12):1455-60. PubMed ID: 3198842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro model for adhesion of bacteria to human tooth root surfaces.
    Switalski LM; Butcher WG
    Arch Oral Biol; 1994 Feb; 39(2):155-61. PubMed ID: 8185501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of Streptococcus mutans Biofilm Formation by the Joint Action of Oxyresveratrol and Lactobacillus casei.
    Wu J; Jiang X; Yang Q; Zhang Y; Wang C; Huang R
    Appl Environ Microbiol; 2022 May; 88(9):e0243621. PubMed ID: 35416682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anticaries effect of compounds extracted from Galla chinensis in a multispecies biofilm model.
    Xie Q; Li J; Zhou X
    Oral Microbiol Immunol; 2008 Dec; 23(6):459-65. PubMed ID: 18954351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between streptococci of human dental plaques and dental caries.
    Biral RR
    Aust Dent J; 1976 Apr; 21(2):143-6. PubMed ID: 1068669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competition and Caries on Enamel of a Dual-Species Biofilm Model with Streptococcus mutans and Streptococcus sanguinis.
    Díaz-Garrido N; Lozano CP; Kreth J; Giacaman RA
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro.
    Haukioja A; Loimaranta V; Tenovuo J
    Oral Microbiol Immunol; 2008 Aug; 23(4):336-43. PubMed ID: 18582334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.