These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31484381)
1. 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. Paun IA; Calin BS; Mustaciosu CC; Mihailescu M; Moldovan A; Crisan O; Leca A; Luculescu CR Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31484381 [TBL] [Abstract][Full Text] [Related]
2. Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing. Paun IA; Mustaciosu CC; Mihailescu M; Calin BS; Sandu AM Sci Rep; 2020 Oct; 10(1):16418. PubMed ID: 33009486 [TBL] [Abstract][Full Text] [Related]
3. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Popescu RC; Calin BS; Tanasa E; Vasile E; Mihailescu M; Paun IA Front Bioeng Biotechnol; 2023; 11():1273277. PubMed ID: 38170069 [TBL] [Abstract][Full Text] [Related]
4. Imparting of Nearly Superparamagnetic Properties to Cryogel Scaffolds With Mesoporous MNPs for Magneto-Sensitive Tissue Engineering Strategies. Demir D; Ulusal F; Ulusal H; Ceylan S; Dağlı S; Özdemir N; Tarakçıoğlu M Biopolymers; 2024 Nov; 115(6):e23623. PubMed ID: 39158278 [TBL] [Abstract][Full Text] [Related]
5. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells. Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Maggi A; Li H; Greer JR Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538 [TBL] [Abstract][Full Text] [Related]
7. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. De Santis R; D'Amora U; Russo T; Ronca A; Gloria A; Ambrosio L J Mater Sci Mater Med; 2015 Oct; 26(10):250. PubMed ID: 26420041 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Poly-Sodium-Acrylate (PSA)-Coated Magnetic Nanoparticles for Use in Forward Osmosis Draw Solutions. Ban I; Markuš S; Gyergyek S; Drofenik M; Korenak J; Helix-Nielsen C; Petrinić I Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480419 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Induction of Multiscale Anisotropy in Macroporous Alginate Scaffolds. Margolis G; Polyak B; Cohen S Nano Lett; 2018 Nov; 18(11):7314-7322. PubMed ID: 30380888 [TBL] [Abstract][Full Text] [Related]
10. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Obaidat IM; Issa B; Haik Y Nanomaterials (Basel); 2015 Jan; 5(1):63-89. PubMed ID: 28347000 [TBL] [Abstract][Full Text] [Related]
11. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect. Leong SS; Ahmad Z; Lim J Soft Matter; 2015 Sep; 11(35):6968-80. PubMed ID: 26234726 [TBL] [Abstract][Full Text] [Related]
12. Complementary approaches for the evaluation of biocompatibility of Antic B; Boskovic M; Nikodinovic-Runic J; Ming Y; Zhang H; Bozin ES; Janković D; Spasojevic V; Vranjes-Djuric S Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():157-164. PubMed ID: 28415449 [TBL] [Abstract][Full Text] [Related]
13. Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field. Liu H; Li Y; Liu G Med Phys; 2022 Jan; 49(1):521-531. PubMed ID: 34822174 [TBL] [Abstract][Full Text] [Related]
14. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis. Paun IA; Popescu RC; Calin BS; Mustaciosu CC; Dinescu M; Luculescu CR Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29414875 [TBL] [Abstract][Full Text] [Related]
15. Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Gonçalves AI; Rodrigues MT; Carvalho PP; Bañobre-López M; Paz E; Freitas P; Gomes ME Adv Healthc Mater; 2016 Jan; 5(2):213-22. PubMed ID: 26606262 [TBL] [Abstract][Full Text] [Related]
16. Interplay between Amyloid Fibrillation Delay and Degradation by Magnetic Zinc-Doped Ferrite Nanoparticles. Giannousi K; Antonoglou O; Dendrinou-Samara C ACS Chem Neurosci; 2019 Aug; 10(8):3796-3804. PubMed ID: 31298846 [TBL] [Abstract][Full Text] [Related]
17. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. He Y; Yu L; Liu J; Li Y; Wu Y; Huang Z; Wu D; Wang H; Wu Z; Qiu G FASEB J; 2019 May; 33(5):6069-6081. PubMed ID: 30763124 [TBL] [Abstract][Full Text] [Related]
18. Magnetite nanoparticles with aminomethylenephosphonic groups: synthesis, characterization and uptake of europium(III) ions from aqueous media. Kostenko L; Kobylinska N; Khainakov S; Granda SG Mikrochim Acta; 2019 Jun; 186(7):474. PubMed ID: 31250114 [TBL] [Abstract][Full Text] [Related]
19. Magnetic ionic liquids produced by the dispersion of magnetic nanoparticles in 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). Medeiros AM; Parize AL; Oliveira VM; Neto BA; Bakuzis AF; Sousa MH; Rossi LM; Rubim JC ACS Appl Mater Interfaces; 2012 Oct; 4(10):5458-65. PubMed ID: 22966984 [TBL] [Abstract][Full Text] [Related]
20. Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. Ferjaoui Z; Jamal Al Dine E; Kulmukhamedova A; Bezdetnaya L; Soon Chang C; Schneider R; Mutelet F; Mertz D; Begin-Colin S; Quilès F; Gaffet E; Alem H ACS Appl Mater Interfaces; 2019 Aug; 11(34):30610-30620. PubMed ID: 31359758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]