These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31484404)

  • 1. Microfluidics as a Platform for the Analysis of 3D Printing Problems.
    Mendes R; Fanzio P; Campo-Deaño L; Galindo-Rosales FJ
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31484404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery.
    Tan DK; Maniruzzaman M; Nokhodchi A
    Pharmaceutics; 2018 Oct; 10(4):. PubMed ID: 30356002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Approach to Resin Formulation for 3D Printed Microfluidics.
    Gong H; Beauchamp M; Perry S; Woolley AT; Nordin GP
    RSC Adv; 2015 Dec; 5(129):106621-106632. PubMed ID: 26744624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filament.
    Krajangsawasdi N; Nguyen DH; Hamerton I; Woods BKS; Ivanov DS; Longana ML
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual nozzle 3D printing system for super soft composite hydrogels.
    Dine A; Bentley E; PoulmarcK LA; Dini D; Forte AE; Tan Z
    HardwareX; 2021 Apr; 9():e00176. PubMed ID: 35492040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Numerical Investigation of the Extrusion and Deposition Process of a Poly(lactic Acid) Strand with Fused Deposition Modeling.
    Gosset A; Barreiro-Villaverde D; Becerra Permuy JC; Lema M; Ares-Pernas A; Abad López MJ
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33271895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems.
    Rehmani MAA; Jaywant SA; Arif KM
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing.
    Li F; Macdonald NP; Guijt RM; Breadmore MC
    Anal Chem; 2017 Dec; 89(23):12805-12811. PubMed ID: 29048159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
    Gao Q; He Y; Fu JZ; Liu A; Ma L
    Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes.
    De Rosa S; Tammaro D; D'Avino G
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fused Filament Fabrication (FFF) of Metal-Ceramic Components.
    Abel J; Scheithauer U; Janics T; Hampel S; Cano S; Müller-Köhn A; Günther A; Kukla C; Moritz T
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30688295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres.
    Lölsberg J; Linkhorst J; Cinar A; Jans A; Kuehne AJC; Wessling M
    Lab Chip; 2018 May; 18(9):1341-1348. PubMed ID: 29619449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Different Microchannels by Adjusting the Extrusion Parameters for Sacrificial Molds.
    Tang W; Liu H; Zhu L; Shi J; Li Z; Xiang N; Yang J
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Chemical Imaging of Nonplanar Microfluidics.
    Gelber MK; Kole MR; Kim N; Aluru NR; Bhargava R
    Anal Chem; 2017 Feb; 89(3):1716-1723. PubMed ID: 27983804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.