These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 31484544)
1. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. Gotschy A; von Deuster C; van Gorkum RJH; Gastl M; Vintschger E; Schwotzer R; Flammer AJ; Manka R; Stoeck CT; Kozerke S J Cardiovasc Magn Reson; 2019 Sep; 21(1):56. PubMed ID: 31484544 [TBL] [Abstract][Full Text] [Related]
2. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. Stoeck CT; von Deuster C; Fuetterer M; Polacin M; Waschkies CF; van Gorkum RJH; Kron M; Fleischmann T; Cesarovic N; Weisskopf M; Kozerke S J Cardiovasc Magn Reson; 2021 Sep; 23(1):103. PubMed ID: 34538266 [TBL] [Abstract][Full Text] [Related]
3. Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Khalique Z; Ferreira PF; Scott AD; Nielles-Vallespin S; Martinez-Naharro A; Fontana M; Hawkins P; Firmin DN; Pennell DJ Circ Cardiovasc Imaging; 2020 May; 13(5):e009901. PubMed ID: 32408830 [TBL] [Abstract][Full Text] [Related]
5. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. Lin L; Li X; Feng J; Shen KN; Tian Z; Sun J; Mao YY; Cao J; Jin ZY; Li J; Selvanayagam JB; Wang YN J Cardiovasc Magn Reson; 2018 Jan; 20(1):2. PubMed ID: 29298704 [TBL] [Abstract][Full Text] [Related]
6. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics. Williams LK; Forero JF; Popovic ZB; Phelan D; Delgado D; Rakowski H; Wintersperger BJ; Thavendiranathan P J Cardiovasc Magn Reson; 2017 Aug; 19(1):61. PubMed ID: 28784140 [TBL] [Abstract][Full Text] [Related]
7. The relationship between myocardial microstructure and strain in chronic infarction using cardiovascular magnetic resonance diffusion tensor imaging and feature tracking. Sharrack N; Das A; Kelly C; Teh I; Stoeck CT; Kozerke S; Swoboda PP; Greenwood JP; Plein S; Schneider JE; Dall'Armellina E J Cardiovasc Magn Reson; 2022 Nov; 24(1):66. PubMed ID: 36419059 [TBL] [Abstract][Full Text] [Related]
8. Extracellular Volume Associates With Outcomes More Strongly Than Native or Post-Contrast Myocardial T1. Treibel TA; Fridman Y; Bering P; Sayeed A; Maanja M; Frojdh F; Niklasson L; Olausson E; Wong TC; Kellman P; Miller CA; Moon JC; Ugander M; Schelbert EB JACC Cardiovasc Imaging; 2020 Jan; 13(1 Pt 1):44-54. PubMed ID: 31103587 [TBL] [Abstract][Full Text] [Related]
9. An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. Scott AD; Nielles-Vallespin S; Ferreira PF; Khalique Z; Gatehouse PD; Kilner P; Pennell DJ; Firmin DN J Cardiovasc Magn Reson; 2018 Jan; 20(1):1. PubMed ID: 29298692 [TBL] [Abstract][Full Text] [Related]
10. Tissue mapping by cardiac magnetic resonance imaging for the prognostication of cardiac amyloidosis: A systematic review and meta-analysis. Cai S; Haghbayan H; Chan KKW; Deva DP; Jimenez-Juan L; Connelly KA; Ng MY; Yan RT; Yan AT Int J Cardiol; 2024 May; 403():131892. PubMed ID: 38382853 [TBL] [Abstract][Full Text] [Related]
12. Regional Amyloid Burden Differences Evaluated Using Quantitative Cardiac MRI in Patients with Cardiac Amyloidosis. Kim JY; Hong YJ; Han K; Lee HJ; Hur J; Kim YJ; Choi BW Korean J Radiol; 2021 Jun; 22(6):880-889. PubMed ID: 33686816 [TBL] [Abstract][Full Text] [Related]
13. Myocardial tissue characterization in patients with hereditary gelsolin (AGel) amyloidosis using novel cardiovascular magnetic resonance techniques. Lehmonen L; Kaasalainen T; Atula S; Mustonen T; Holmström M Int J Cardiovasc Imaging; 2019 Feb; 35(2):351-358. PubMed ID: 30848402 [TBL] [Abstract][Full Text] [Related]
14. Noncontrast Magnetic Resonance for the Diagnosis of Cardiac Amyloidosis. Baggiano A; Boldrini M; Martinez-Naharro A; Kotecha T; Petrie A; Rezk T; Gritti M; Quarta C; Knight DS; Wechalekar AD; Lachmann HJ; Perlini S; Pontone G; Moon JC; Kellman P; Gillmore JD; Hawkins PN; Fontana M JACC Cardiovasc Imaging; 2020 Jan; 13(1 Pt 1):69-80. PubMed ID: 31202744 [TBL] [Abstract][Full Text] [Related]
16. Myocardial extracellular volume quantification in cardiac amyloidosis: a comparative study between cardiac computed tomography and magnetic resonance imaging. Hayashi H; Oda S; Kidoh M; Yamaguchi S; Yoshimura F; Takashio S; Usuku H; Nagayama Y; Nakaura T; Ueda M; Tsujita K; Hirai T Eur Radiol; 2024 Feb; 34(2):1016-1025. PubMed ID: 37597032 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of Hepatic T1-Mapping and Extracellular Volume Quantification on Routine Cardiac Magnetic Resonance Imaging in Patients with Infiltrative and Systemic Disorders. Dolan RS; Stillman AE; Davarpanah AH Acad Radiol; 2022 Apr; 29 Suppl 4():S100-S109. PubMed ID: 34702675 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic value of the novel CMR parameter "myocardial transit-time" (MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy. Chatzantonis G; Bietenbeck M; Florian A; Meier C; Stalling P; Korthals D; Reinecke H; Yilmaz A Clin Res Cardiol; 2021 Jan; 110(1):136-145. PubMed ID: 32372287 [TBL] [Abstract][Full Text] [Related]
19. 3D myocardial deformation analysis from cine MRI as a marker of amyloid protein burden in cardiac amyloidosis: validation versus T1 mapping. Avitzur N; Satriano A; Afzal M; Narous M; Mikami Y; Hansen R; Dobko G; Flewitt J; Lydell CP; Howarth AG; Chow K; Fine NM; White JA Int J Cardiovasc Imaging; 2018 Dec; 34(12):1937-1946. PubMed ID: 30014362 [TBL] [Abstract][Full Text] [Related]