These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31484600)

  • 1. Signal detection of oral drug-induced dementia in chronic kidney disease patients using association rule mining and Bayesian confidence propagation neural network.
    Noguchi Y; Nagasawa H; Tachi T; Tsuchiya T; Teramachi H
    Pharmazie; 2019 Sep; 74(9):570-574. PubMed ID: 31484600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Borrowing external information to improve Bayesian confidence propagation neural network.
    Tada K; Maruo K; Isogawa N; Yamaguchi Y; Gosho M
    Eur J Clin Pharmacol; 2020 Sep; 76(9):1311-1319. PubMed ID: 32488331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and analysis of signals of adverse events of memantine based on the US food and drug administration adverse event reporting system.
    Zhang W; Chen M; Cai X; Zhang M; Hu M; Hu Y; Yang Y; Zhu J; Du Y; Yang C
    Expert Opin Drug Saf; 2024 May; 23(5):617-625. PubMed ID: 38568141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data mining spontaneous adverse drug event reports for safety signals in Singapore - a comparison of three different disproportionality measures.
    Ang PS; Chen Z; Chan CL; Tai BC
    Expert Opin Drug Saf; 2016 May; 15(5):583-90. PubMed ID: 26996192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data mining approach for signal detection and analysis.
    Bate A; Lindquist M; Edwards IR; Orre R
    Drug Saf; 2002; 25(6):393-7. PubMed ID: 12071775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reporting bias in the analysis of spontaneous reporting data.
    Ghosh P; Dewanji A
    Pharm Stat; 2015; 14(1):20-5. PubMed ID: 25376637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human papillomavirus vaccine-associated premature ovarian insufficiency and related adverse events: data mining of Vaccine Adverse Event Reporting System.
    Gong L; Ji HH; Tang XW; Pan LY; Chen X; Jia YT
    Sci Rep; 2020 Jul; 10(1):10762. PubMed ID: 32612121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surveillance of drugs that most frequently induce acute kidney injury: A pharmacovigilance approach.
    Hosohata K; Inada A; Oyama S; Furushima D; Yamada H; Iwanaga K
    J Clin Pharm Ther; 2019 Feb; 44(1):49-53. PubMed ID: 30014591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian confidence propagation neural network.
    Bate A
    Drug Saf; 2007; 30(7):623-5. PubMed ID: 17604417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triptans and serious adverse vascular events: data mining of the FDA Adverse Event Reporting System database.
    Roberto G; Piccinni C; D'Alessandro R; Poluzzi E
    Cephalalgia; 2014 Jan; 34(1):5-13. PubMed ID: 23921799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-mining analyses of pharmacovigilance signals in relation to relevant comparison drugs.
    Bate A; Lindquist M; Orre R; Edwards IR; Meyboom RH
    Eur J Clin Pharmacol; 2002 Oct; 58(7):483-90. PubMed ID: 12389072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database.
    Lindquist M; Ståhl M; Bate A; Edwards IR; Meyboom RH
    Drug Saf; 2000 Dec; 23(6):533-42. PubMed ID: 11144660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spontaneous reporting system data analysis of parenterally administered Shenmai].
    Wang LX; Xiang YY; Xie YM; Shen H; Ai QH
    Zhongguo Zhong Yao Za Zhi; 2013 Sep; 38(18):2987-93. PubMed ID: 24471317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of analysis 1 390 adverse drug reactions cases of parenterally administered dengzhan xixin based on China's spontaneous response system].
    Li YY; Xiang YY; Xie YM; Shen H
    Zhongguo Zhong Yao Za Zhi; 2013 Sep; 38(18):2998-3002. PubMed ID: 24471319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of adverse reactions and pharmacovigilance research to parenterally administered shuxuening].
    Yang W; Xiang YY; Xie YM; Shen H
    Zhongguo Zhong Yao Za Zhi; 2013 Sep; 38(18):3013-8. PubMed ID: 24471322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of data mining in routine signal detection: Analysis based on the safety signals identified by the FDA.
    Fukazawa C; Hinomura Y; Kaneko M; Narukawa M
    Pharmacoepidemiol Drug Saf; 2018 Dec; 27(12):1402-1408. PubMed ID: 30324671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin cancer signal associated with phosphodiesterase inhibitors: gaining insight through the FDA pharmacovigilance database.
    Chow JW; Yan MM; Zhao H; Li ZR; Zhang Q; Zhong MK; Qiu XY
    Expert Opin Drug Saf; 2023; 22(5):433-441. PubMed ID: 36334066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Detection of Adverse Drug Reaction Signals by Association Rule Mining Using Large-Scale Administrative Claims Data.
    Yamamoto H; Kayanuma G; Nagashima T; Toda C; Nagayasu K; Kaneko S
    Drug Saf; 2023 Apr; 46(4):371-389. PubMed ID: 36828947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.