These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31485854)

  • 1. Variations in the lake area, water level, and water volume of Hongjiannao Lake during 1986-2018 based on Landsat and ASTER GDEM data.
    Yue H; Liu Y
    Environ Monit Assess; 2019 Sep; 191(10):606. PubMed ID: 31485854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water balance and influence mechanism analysis: a case study of Hongjiannao Lake, China.
    Yue H; Liu Y
    Environ Monit Assess; 2021 Mar; 193(4):219. PubMed ID: 33760989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.
    Duru U
    Environ Monit Assess; 2017 Aug; 189(8):385. PubMed ID: 28688069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the fluctuation of Lake Hulun, China, during 1975-2015 from satellite altimetry data.
    Liu Y; Yue H
    Environ Monit Assess; 2017 Nov; 189(12):630. PubMed ID: 29128974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M
    J Environ Manage; 2021 Nov; 298():113481. PubMed ID: 34392093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water resource dynamics and protection strategies for inland lakes: A case study of Hongjiannao Lake.
    Sun M; Zhang L; Yang R; Li X; Zhao J; Liu Q
    J Environ Manage; 2024 Mar; 355():120462. PubMed ID: 38422851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.
    Jeihouni M; Toomanian A; Alavipanah SK; Hamzeh S
    Environ Monit Assess; 2017 Oct; 189(11):572. PubMed ID: 29046972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of satellite altimetry-based and DEM-based methods for estimating lake water volume changes.
    Li H; Chen J; Cao L; Liu W; Duan Z
    Water Sci Technol; 2024 Apr; 89(8):1913-1927. PubMed ID: 38678399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of shoreline alterations using a Digital Shoreline Analysis System: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017.
    Kale MM; Ataol M; Tekkanat IS
    Environ Monit Assess; 2019 May; 191(6):398. PubMed ID: 31129866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye.
    Kaya Y; Sanli FB; Abdikan S
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117729-117747. PubMed ID: 37872337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.
    Doña C; Chang NB; Caselles V; Sánchez JM; Camacho A; Delegido J; Vannah BW
    J Environ Manage; 2015 Mar; 151():416-26. PubMed ID: 25602695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life.
    Zakharova EA; Kouraev AV; Stephane G; Franck G; Desyatkin RV; Desyatkin AR
    Sci Total Environ; 2018 Feb; 615():1290-1304. PubMed ID: 29751434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972-2013 period.
    Zhang F; Tiyip T; Johnson VC; Kung HT; Ding JL; Sun Q; Zhou M; Kelimu A; Nurmuhammat I; Chan NW
    Environ Monit Assess; 2015 Jan; 187(1):4128. PubMed ID: 25410947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand.
    Nguyen UNT; Pham LTH; Dang TD
    Environ Monit Assess; 2019 Mar; 191(4):235. PubMed ID: 30900016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climatic implications on variations of Qehan Lake in the arid regions of Inner Mongolia during the recent five decades.
    Chun X; Su R; Liu J; Liang W; Yong M; Ulambadrakh K
    Environ Monit Assess; 2017 Jan; 189(1):14. PubMed ID: 27966191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003-2009).
    Ye Z; Liu H; Chen Y; Shu S; Wu Q; Wang S
    PLoS One; 2017; 12(9):e0183800. PubMed ID: 28873094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches.
    Mohsen A; Elshemy M; Zeidan BA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):30763-30771. PubMed ID: 27966082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water quality monitoring of Lake Burullus (Egypt) using Landsat satellite imageries.
    Mohsen A; Elshemy M; Zeidan B
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):15687-15700. PubMed ID: 33237559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine.
    Zhou Y; Dong J; Xiao X; Liu R; Zou Z; Zhao G; Ge Q
    Sci Total Environ; 2019 Nov; 689():366-380. PubMed ID: 31277004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.