These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31485854)

  • 21. A quantitative analysis of multi-decadal shoreline changes along the East Coast of South Korea.
    Yum SG; Park S; Lee JJ; Adhikari MD
    Sci Total Environ; 2023 Jun; 876():162756. PubMed ID: 36921875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models.
    Hasan E; Khan SI; Hong Y
    Environ Monit Assess; 2015 Oct; 187(10):649. PubMed ID: 26410824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on colored dissolved organic matter concentration retrieved from Landsat/TM imagery at Taihu Lake].
    Chen J; Wang BJ; Sun JH; Fu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):34-8. PubMed ID: 21428050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM
    Nhu VH; Mohammadi A; Shahabi H; Shirzadi A; Al-Ansari N; Ahmad BB; Chen W; Khodadadi M; Ahmadi M; Khosravi K; Jaafari A; Nguyen H
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OBIA based hierarchical image classification for industrial lake water.
    Uca Avci ZD; Karaman M; Ozelkan E; Kumral M; Budakoglu M
    Sci Total Environ; 2014 Jul; 487():565-73. PubMed ID: 24813772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on vegetation change of Taitemar Lake during ecological water transfer.
    Zhao X; Xu H
    Environ Monit Assess; 2019 Sep; 191(10):613. PubMed ID: 31489508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shoreline contour, water level elevation and volumetric dataset (1984-2020) for the Gallocanta Lake (NE Spain).
    Palomar-Vázquez J; Cabezas-Rabadán C; Fernández-Sarría A; Priego-de-Los-Santos E; Pons-Crespo R; Pardo-Pascual JE
    Data Brief; 2022 Aug; 43():108437. PubMed ID: 35845099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.
    Kang S; Hong SY
    PLoS One; 2016; 11(3):e0151395. PubMed ID: 27007233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.
    Lima RC; Mesquita AL; Blanco CJ; Santos Mde L; Secretan Y
    An Acad Bras Cienc; 2015 Sep; 87(3):1505-18. PubMed ID: 26421456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images.
    He Y; Lu Z; Wang W; Zhang D; Zhang Y; Qin B; Shi K; Yang X
    Water Res; 2022 May; 215():118241. PubMed ID: 35259557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatio-temporal analysis of oil lake and oil-polluted surfaces from remote sensing data in one of the Libyan oil fields.
    Abdunaser K
    Sci Rep; 2020 Nov; 10(1):20174. PubMed ID: 33214654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau.
    Qiao B; Zhu L
    Sci Total Environ; 2019 Nov; 693():133399. PubMed ID: 31374510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring of Chilika Lake mouth dynamics and quantifying rate of shoreline change using 30 m multi-temporal Landsat data.
    G V; Goswami S; Samal RN; Choudhury SB
    Data Brief; 2019 Feb; 22():595-600. PubMed ID: 30671505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data.
    Deoli V; Kumar D; Kuriqi A
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data.
    Zhang Y; Zhang G; Zhu T
    Sci Total Environ; 2020 Feb; 703():135563. PubMed ID: 31767310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water Regime Evolution of Large Seasonal Lakes: Indicators for Characterization and an Application in Poyang Lake, China.
    Huang F; Yan B; Zhang X; Zhao D; Guo L; Wang Y; Xia Z
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30469345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods.
    Grochowska J; Brzozowska R; Lopata M
    Water Sci Technol; 2013; 68(1):234-9. PubMed ID: 23823560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.
    Zawadzki J; Przeździecki K; Miatkowski Z
    J Environ Manage; 2016 Jan; 166():605-14. PubMed ID: 26610610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Dynamic evolution of wetland landscape spatial pattern in Nansi Lake, China].
    Chen ZC; Xie XP; Bai MW
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3316-3324. PubMed ID: 29726159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying geospatial technology in quantifying spatiotemporal shoreline dynamics along Marina El-Alamein Resort, Egypt.
    Emam WWM; Soliman KM
    Environ Monit Assess; 2020 Jun; 192(7):459. PubMed ID: 32594257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.