BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 31485987)

  • 1. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment.
    Detmer FJ; Lückehe D; Mut F; Slawski M; Hirsch S; Bijlenga P; von Voigt G; Cebral JR
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):141-150. PubMed ID: 31485987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study.
    Chen G; Lu M; Shi Z; Xia S; Ren Y; Liu Z; Liu X; Li Z; Mao L; Li XL; Zhang B; Zhang LJ; Lu GM
    Eur Radiol; 2020 Sep; 30(9):5170-5182. PubMed ID: 32350658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics.
    Detmer FJ; Hadad S; Chung BJ; Mut F; Slawski M; Juchler N; Kurtcuoglu V; Hirsch S; Bijlenga P; Uchiyama Y; Fujimura S; Yamamoto M; Murayama Y; Takao H; Koivisto T; Frösen J; Cebral JR
    Neurosurg Focus; 2019 Jul; 47(1):E16. PubMed ID: 31261120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture.
    Silva MA; Patel J; Kavouridis V; Gallerani T; Beers A; Chang K; Hoebel KV; Brown J; See AP; Gormley WB; Aziz-Sultan MA; Kalpathy-Cramer J; Arnaout O; Patel NJ
    World Neurosurg; 2019 Nov; 131():e46-e51. PubMed ID: 31295616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics.
    Detmer FJ; Chung BJ; Mut F; Slawski M; Hamzei-Sichani F; Putman C; Jiménez C; Cebral JR
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1767-1779. PubMed ID: 30094777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral aneurysm rupture status classification using statistical and machine learning methods.
    Amigo N; Valencia A; Wu W; Patnaik S; Finol E
    Proc Inst Mech Eng H; 2021 Jun; 235(6):655-662. PubMed ID: 33685288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External validation of cerebral aneurysm rupture probability model with data from two patient cohorts.
    Detmer FJ; Fajardo-Jiménez D; Mut F; Juchler N; Hirsch S; Pereira VM; Bijlenga P; Cebral JR
    Acta Neurochir (Wien); 2018 Dec; 160(12):2425-2434. PubMed ID: 30374656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-phase II: rupture risk assessment.
    Berg P; Voß S; Janiga G; Saalfeld S; Bergersen AW; Valen-Sendstad K; Bruening J; Goubergrits L; Spuler A; Chiu TL; Tsang ACO; Copelli G; Csippa B; Paál G; Závodszky G; Detmer FJ; Chung BJ; Cebral JR; Fujimura S; Takao H; Karmonik C; Elias S; Cancelliere NM; Najafi M; Steinman DA; Pereira VM; Piskin S; Finol EA; Pravdivtseva M; Velvaluri P; Rajabzadeh-Oghaz H; Paliwal N; Meng H; Seshadhri S; Venguru S; Shojima M; Sindeev S; Frolov S; Qian Y; Wu YA; Carlson KD; Kallmes DF; Dragomir-Daescu D; Beuing O
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1795-1804. PubMed ID: 31054128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological-Hemodynamic Characteristics of Intracranial Bifurcation Mirror Aneurysms.
    Fan J; Wang Y; Liu J; Jing L; Wang C; Li C; Yang X; Zhang Y
    World Neurosurg; 2015 Jul; 84(1):114-120.e2. PubMed ID: 25753233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating variability of patient inflow conditions into statistical models for aneurysm rupture assessment.
    Detmer FJ; Mut F; Slawski M; Hirsch S; Bijlenga P; Cebral JR
    Acta Neurochir (Wien); 2020 Mar; 162(3):553-566. PubMed ID: 32008209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pilot study using a machine-learning approach of morphological and hemodynamic parameters for predicting aneurysms enhancement.
    Lv N; Karmonik C; Shi Z; Chen S; Wang X; Liu J; Huang Q
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1313-1321. PubMed ID: 32514728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in wall shear stress magnitude after aneurysm rupture.
    Kono K; Tomura N; Yoshimura R; Terada T
    Acta Neurochir (Wien); 2013 Aug; 155(8):1559-63. PubMed ID: 23715949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms?
    Mu N; Rezaeitaleshmahalleh M; Lyu Z; Wang M; Tang J; Strother CM; Gemmete JJ; Pandey AS; Jiang J
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36626819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study.
    Shi Z; Chen GZ; Mao L; Li XL; Zhou CS; Xia S; Zhang YX; Zhang B; Hu B; Lu GM; Zhang LJ
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):648-654. PubMed ID: 33664115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location.
    Detmer FJ; Chung BJ; Jimenez C; Hamzei-Sichani F; Kallmes D; Putman C; Cebral JR
    Neuroradiology; 2019 Mar; 61(3):275-284. PubMed ID: 30456458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic assessment of the development and rupture of intracranial aneurysms using computational simulations.
    Chitanvis SM; Hademenos G; Powers WJ
    Neurol Res; 1995 Dec; 17(6):426-34. PubMed ID: 8622796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic Differences Between Ruptured and Unruptured Cerebral Aneurysms Simultaneously Existing in the Same Location: 2 Case Reports and Proposal of a Novel Parameter Oscillatory Velocity Index.
    Sano T; Ishida F; Tsuji M; Furukawa K; Shimosaka S; Suzuki H
    World Neurosurg; 2017 Feb; 98():868.e5-868.e10. PubMed ID: 28017758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.