BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31486014)

  • 1. Applicability of Low-Cost Binders for the Quantitative Elemental Analysis of Urinary Stones Using EDXRF Based on Fundamental Parameter Approach.
    Shaltout AA; Dabi MM; Ibrahim MM; Al-Ghamdi AS; Elnagar E
    Biol Trace Elem Res; 2020 Jun; 195(2):417-426. PubMed ID: 31486014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic Characterization of Urinary Stones Richening with Calcium Oxalate.
    Shaltout AA; Dabi MM; Ahmed SI; Al-Ghamdi AS; Elnagar E; Seoudi R
    Biol Trace Elem Res; 2021 Aug; 199(8):2858-2868. PubMed ID: 33037980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning electron microscopy in analysis of urinary stones.
    Racek M; Racek J; Hupáková I
    Scand J Clin Lab Invest; 2019 May; 79(3):208-217. PubMed ID: 30821516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fired pressed pellet as a sample preparation technique of choice for an energy dispersive X-ray fluorescence analysis of raw clays.
    Mijatović N; Vasić M; Miličić L; Radomirović M; Radojević Z
    Talanta; 2023 Jan; 252():123844. PubMed ID: 36001900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Energy Dispersive X-ray Fluorescence Spectrometry to the Determination of Copper, Manganese, Zinc, and Sulfur in Grass ( Lolium perenne) in Grazed Agricultural Systems.
    Daly K; Fenelon A
    Appl Spectrosc; 2018 Nov; 72(11):1661-1673. PubMed ID: 29916264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation.
    Guimarães D; Dias AA; Carvalho M; Carvalho ML; Santos JP; Henriques FR; Curate F; Pessanha S
    Talanta; 2016 Aug; 155():107-15. PubMed ID: 27216663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The correlation of crystalline and elemental composition of urinary stones with a history of bacterial infections: TXRF, XRPD and PCR-DGGE studies.
    Arabski M; Stabrawa I; Kubala-Kukuś A; Gałczyńska K; Banaś D; Piskorz Ł; Forma E; Bryś M; Różański W; Lipiński M
    Eur Biophys J; 2019 Jan; 48(1):111-118. PubMed ID: 30483831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcomposition of human urinary calculi using advanced imaging techniques.
    Blaschko SD; Miller J; Chi T; Flechner L; Fakra S; Kahn A; Kapahi P; Stoller ML
    J Urol; 2013 Feb; 189(2):726-34. PubMed ID: 23021997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of X-ray fluorescence spectrometry for screening pharmaceutical products for Elemental Impurities according to ICH guideline Q3D.
    Sauer B; Xiao Y; Zoontjes M; Kroll C
    J Pharm Biomed Anal; 2020 Feb; 179():113005. PubMed ID: 31812806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of human tissues using Energy Dispersive X Ray Fluorescence - Dark matrix determination for the application to cancer research.
    Ensina A; Carvalho PM; Machado J; Carvalho ML; Casal D; Pais D; Santos JP; Dias AA; Pessanha S
    J Trace Elem Med Biol; 2021 Dec; 68():126837. PubMed ID: 34385034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory coherent-scatter analysis of intact urinary stones with crystalline composition: a tomographic approach.
    Davidson MT; Batchelar DL; Velupillai S; Denstedt JD; Cunningham IA
    Phys Med Biol; 2005 Aug; 50(16):3907-25. PubMed ID: 16077235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic associations within 460 non-infection urinary stones. A quantitative chemical analytical study applying a new classification.
    Abdel-Halim RE; al-Sibaai A; Baghlaf AO
    Scand J Urol Nephrol; 1993; 27(2):155-62. PubMed ID: 8351466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative X-ray diffraction analysis of urinary calculi by use of the internal-standard method and reference intensity ratios.
    Wandt MA; Rodgers AL
    Clin Chem; 1988 Feb; 34(2):289-93. PubMed ID: 2830052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography.
    Sheir KZ; Mansour O; Madbouly K; Elsobky E; Abdel-Khalek M
    Urol Res; 2005 May; 33(2):99-104. PubMed ID: 15645229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for predicting uric acid composition in urinary stones using routine single-energy CT.
    Lidén M
    Urolithiasis; 2018 Aug; 46(4):325-332. PubMed ID: 28660283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The elemental composition of renal and ureteral stones determined with the energy dispersive X-ray fluorescence method (ED-XRF).
    Juszczak K; Wróbel A; Wyczółkowski M; Rokita E; Thor PJ
    Folia Med Cracov; 2009; 50(3-4):77-83. PubMed ID: 21853874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on Test Method of Metallic Element Contained in Tea Based on EDXRF Technique].
    Qin XL; Li Y; Song ZH; Wang GZ; Li S; Shan GF; Duanmu QD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):1068-71. PubMed ID: 26197604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analytical evaluation of urinary calculi mineral composition].
    Machoy P
    Ann Acad Med Stetin; 1995; 41():259-71. PubMed ID: 8615550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the U.S. EPA procedure for determining method detection limits to EDXRF measurement of filter-based aerosol samples.
    Hyslop NP; Liu Y; Yatkin S; Trzepla K
    J Air Waste Manag Assoc; 2022 Aug; 72(8):905-913. PubMed ID: 35420929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative X-ray fluorescence analysis: Trace level detection of toxic elemental impurities in drug product by ED-XRF spectrometer.
    Chowdhury AR; Maheshwari N; Soni J; Kapil M; Mehta T; Mukharya A
    J Pharm Biomed Anal; 2020 Sep; 189():113292. PubMed ID: 32645616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.