These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31486165)

  • 1. Multiple imputation for systematically missing confounders within a distributed data drug safety network: A simulation study and real-world example.
    Secrest MH; Platt RW; Reynier P; Dormuth CR; Benedetti A; Filion KB
    Pharmacoepidemiol Drug Saf; 2020 Jan; 29 Suppl 1():35-44. PubMed ID: 31486165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
    Burne RM; Abrahamowicz M
    Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study.
    Sperrin M; Martin GP
    BMC Med Res Methodol; 2020 Jul; 20(1):185. PubMed ID: 32640992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zostavax vaccine effectiveness among US elderly using real-world evidence: Addressing unmeasured confounders by using multiple imputation after linking beneficiary surveys with Medicare claims.
    Izurieta HS; Wu X; Lu Y; Chillarige Y; Wernecke M; Lindaas A; Pratt D; MaCurdy TE; Chu S; Kelman J; Forshee R
    Pharmacoepidemiol Drug Saf; 2019 Jul; 28(7):993-1001. PubMed ID: 31168897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of different methods to handle missing data in the context of propensity score analysis.
    Choi J; Dekkers OM; le Cessie S
    Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data.
    Resche-Rigon M; White IR; Bartlett JW; Peters SA; Thompson SG;
    Stat Med; 2013 Dec; 32(28):4890-905. PubMed ID: 23857554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analyses of unmeasured and partially-measured confounders using multiple imputation in a vaccine safety study.
    Xu S; Clarke CL; Newcomer SR; Daley MF; Glanz JM
    Pharmacoepidemiol Drug Saf; 2021 Sep; 30(9):1200-1213. PubMed ID: 33988275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing partially missing confounder information in comparative effectiveness and safety research of therapeutics.
    Toh S; García Rodríguez LA; Hernán MA
    Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2(0 2):13-20. PubMed ID: 22552975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for using clinical laboratory test results as baseline confounders in multi-site observational database studies when missing data are expected.
    Raebel MA; Shetterly S; Lu CY; Flory J; Gagne JJ; Harrell FE; Haynes K; Herrinton LJ; Patorno E; Popovic J; Selvan M; Shoaibi A; Wang X; Roy J
    Pharmacoepidemiol Drug Saf; 2016 Jul; 25(7):798-814. PubMed ID: 27146273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing missingness patterns in real-world data using the SMDI toolkit: application to a linked EHR-claims pharmacoepidemiology study.
    Raman SR; Hammill BG; Shaw PA; Lee H; Toh S; Connolly JG; Dandreo KJ; Nalawade V; Tian F; Liu W; Li J; Hernández-Muñoz JJ; Glynn RJ; Desai RJ; Weberpals J
    BMC Med Res Methodol; 2024 Oct; 24(1):246. PubMed ID: 39427148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bias-corrected estimator in multiple imputation for missing data.
    Tomita H; Fujisawa H; Henmi M
    Stat Med; 2018 Oct; 37(23):3373-3386. PubMed ID: 29845646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach to addressing missing data for electronic medical records and pharmacy claims data research.
    Bounthavong M; Watanabe JH; Sullivan KM
    Pharmacotherapy; 2015 Apr; 35(4):380-7. PubMed ID: 25884526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity evaluation of indirect adjustment method for multiple unmeasured confounders: A simulation and empirical study.
    Byun G; Kim H; Kim SY; Kim SS; Oh H; Lee JT
    Environ Res; 2022 Mar; 204(Pt A):111992. PubMed ID: 34487697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imputing missing covariates in time-to-event analysis within distributed research networks: A simulation study.
    Li D; Wong J; Li X; Toh S; Wang R
    Pharmacoepidemiol Drug Saf; 2023 Mar; 32(3):330-340. PubMed ID: 36380400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instrumental Variable Methods for Continuous Outcomes That Accommodate Nonignorable Missing Baseline Values.
    Ertefaie A; Flory JH; Hennessy S; Small DS
    Am J Epidemiol; 2017 Jun; 185(12):1233-1239. PubMed ID: 28338946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalent new-user cohort designs for comparative drug effect studies by time-conditional propensity scores.
    Suissa S; Moodie EE; Dell'Aniello S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):459-468. PubMed ID: 27610604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of methods to estimate missing days' supply within pharmacy data of the Clinical Practice Research Datalink (CPRD) and The Health Improvement Network (THIN).
    Lum KJ; Newcomb CW; Roy JA; Carbonari DM; Saine ME; Cardillo S; Bhullar H; Gallagher AM; Lo Re V
    Eur J Clin Pharmacol; 2017 Jan; 73(1):115-123. PubMed ID: 27787616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation for handling missing outcome data when estimating the relative risk.
    Sullivan TR; Lee KJ; Ryan P; Salter AB
    BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.