These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3148646)

  • 21. The effect of tryptophan modification on the structure and function of a sea snake neurotoxin.
    Allen M; Tu AT
    Mol Pharmacol; 1985 Jan; 27(1):79-85. PubMed ID: 3917546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction method for analysis of detergent-solubilized bacteriorhodopsin and hydrophobic peptides by electrospray ionization mass spectrometry.
    Barnidge DR; Dratz EA; Jesaitis AJ; Sunner J
    Anal Biochem; 1999 Apr; 269(1):1-9. PubMed ID: 10094768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Accessibility of tryptophan residues in immunoglobulin M molecule as an indicator of its conformational variability].
    Lapuk VA; Chukhrova AI; Khatiashvili NM; Shmakova FV; Kaverzneva ED; Timofeev VP
    Biokhimiia; 1989 Dec; 54(12):1956-64. PubMed ID: 2633801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional consequences of tryptophan modification in human fibrinogen.
    Ishida Y; Takiuchi H; Matsushima A; Inada Y
    Biochim Biophys Acta; 1978 Sep; 536(1):70-7. PubMed ID: 101250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does 2-hydroxy-5-nitrobenzyl bromide react with the epsilon-subunit of the mitochondrial F1-ATPase?
    Baracca A; Menegatti D; Parenti Castelli G; Rossi CA; Solaini G
    Biochem Int; 1990 Sep; 21(6):1135-42. PubMed ID: 2150481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The preparation of lipid-depleted bacteriorhodopsin.
    Wildenauer D; Khorana HG
    Biochim Biophys Acta; 1977 Apr; 466(2):315-24. PubMed ID: 857886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reaction of dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide with N-acetyl-L-tryptophan amide.
    Heinrich CP; Adam S; Arnold W
    FEBS Lett; 1973 Jul; 33(2):181-3. PubMed ID: 4729480
    [No Abstract]   [Full Text] [Related]  

  • 28. Tryptophan modification by 2-hydroxy-5-nitrobenzyl bromide studied by MALDI-TOF mass spectrometry.
    Strohalm M; KodĂ­cek M; Pechar M
    Biochem Biophys Res Commun; 2003 Dec; 312(3):811-6. PubMed ID: 14680838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of amino acid side chains in membrane proteins by high field solid state deuterium nuclear magnetic resonance spectroscopy. Phenylalanine, tyrosine, and tryptophan.
    Kinsey RA; Kintanar A; Oldfield E
    J Biol Chem; 1981 Sep; 256(17):9028-36. PubMed ID: 7263697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tritium thermal activation study of bacteriorhodopsin topography.
    Tsetlin VI; Alyonycheva TN; Shemyakin VV; Neiman LA; Ivanov VT
    Eur J Biochem; 1988 Dec; 178(1):123-9. PubMed ID: 3203683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freeze-fracture electron microscopy study of bacteriorhodopsin oligomerization.
    Rigaud JL; Gulik-Krzywicki T; Seigneuret M
    Prog Clin Biol Res; 1988; 273():99-104. PubMed ID: 3420138
    [No Abstract]   [Full Text] [Related]  

  • 32. A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome.
    Blonder J; Conrads TP; Yu LR; Terunuma A; Janini GM; Issaq HJ; Vogel JC; Veenstra TD
    Proteomics; 2004 Jan; 4(1):31-45. PubMed ID: 14730670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The modification of the tryptophan residues of bovine alpha-lactalbumin with 2-hydroxy-5-nitrobenzyl bromide and with dimethyl(2-hydroxy-5-nitrobenzyl)sulphonium bromide.
    Barman TE
    Biochim Biophys Acta; 1972 Feb; 257(2):297-313. PubMed ID: 5063246
    [No Abstract]   [Full Text] [Related]  

  • 34. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band.
    Kalisky O; Feitelson J; Ottolenghi M
    Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunological probes for bacteriorhodopsin. Identification of three distinct antigenic sites on the cytoplasmic surface.
    Kimura K; Mason TL; Khorana HG
    J Biol Chem; 1982 Mar; 257(6):2859-67. PubMed ID: 6174514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tyrosine and tryptophan modification monitored by ultraviolet resonance Raman spectroscopy.
    Caswell DS; Spiro TG
    Biochim Biophys Acta; 1986 Sep; 873(1):73-8. PubMed ID: 3091073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.
    Gitlin G; Bayer EA; Wilchek M
    Biochem J; 1988 Feb; 250(1):291-4. PubMed ID: 3355517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of tyrosine and tryptophan in chemically modified serum albumin on its tissue distribution.
    Ma SF; Nishikawa M; Yabe Y; Yamashita F; Hashida M
    Biol Pharm Bull; 2006 Sep; 29(9):1926-30. PubMed ID: 16946511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segregation of modified bacteriorhodopsin aggregations in reconstituted vesicle membrane induced by the change of thermodynamical parameters.
    Yamada T; Ishizaka S
    Cell Struct Funct; 1991 Apr; 16(2):167-73. PubMed ID: 1907219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Surface-enhanced Raman spectroscopy of biopolymers: membrane proteins, bacteriorhodopsin and rhodopsin adsorbed on silver electrodes and silver hydrosols].
    Nabiev IR; Efremov RG; Chumanov GD
    Biofizika; 1986; 31(4):724-34. PubMed ID: 3756239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.