BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31486766)

  • 1. An analysis of the IS
    Harmer CJ; Hall RM
    Microb Genom; 2019 Sep; 5(9):. PubMed ID: 31486766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the specific DNA-binding properties of Tnp26, the transposase of insertion sequence IS26.
    Pong CH; Harmer CJ; Flores JK; Ataide SF; Hall RM
    J Biol Chem; 2021 Oct; 297(4):101165. PubMed ID: 34487761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An IS26 variant with enhanced activity.
    Pong CH; Harmer CJ; Ataide SF; Hall RM
    FEMS Microbiol Lett; 2019 Feb; 366(3):. PubMed ID: 30753435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding.
    Rousseau P; Gueguen E; Duval-Valentin G; Chandler M
    Nucleic Acids Res; 2004; 32(4):1335-44. PubMed ID: 14981152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IS
    Harmer CJ; Hall RM
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31915227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats.
    Wang H; Hartswood E; Finnegan DJ
    Nucleic Acids Res; 1999 Jan; 27(2):455-61. PubMed ID: 9862965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.
    Guérillot R; Siguier P; Gourbeyre E; Chandler M; Glaser P
    Genome Biol Evol; 2014 Feb; 6(2):260-72. PubMed ID: 24418649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The many faces of the helix-turn-helix domain: transcription regulation and beyond.
    Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM
    FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements.
    Hennig S; Ziebuhr W
    J Bacteriol; 2010 Aug; 192(16):4153-63. PubMed ID: 20543074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the N-terminal DNA binding domain of the IS30 transposase.
    Nagy Z; Szabó M; Chandler M; Olasz F
    Mol Microbiol; 2004 Oct; 54(2):478-88. PubMed ID: 15469518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of a characteristic D-D-E motif in IS1 transposase.
    Ohta S; Tsuchida K; Choi S; Sekine Y; Shiga Y; Ohtsubo E
    J Bacteriol; 2002 Nov; 184(22):6146-54. PubMed ID: 12399484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-strand DNA processing: phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonucleases.
    Quentin Y; Siguier P; Chandler M; Fichant G
    BMC Genomics; 2018 Jun; 19(1):475. PubMed ID: 29914351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Conservative Cointegrate Formation Mediated by IS
    Harmer CJ; Hall RM
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33504667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
    Feschotte C; Osterlund MT; Peeler R; Wessler SR
    Nucleic Acids Res; 2005; 33(7):2153-65. PubMed ID: 15831788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L; Normand C; Polard P; Alazard R; Chandler M
    J Mol Biol; 2000 Feb; 296(3):757-68. PubMed ID: 10677279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel IS element, IS621, of the IS110/IS492 family transposes to a specific site in repetitive extragenic palindromic sequences in Escherichia coli.
    Choi S; Ohta S; Ohtsubo E
    J Bacteriol; 2003 Aug; 185(16):4891-900. PubMed ID: 12897009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of two domains with helix-turn-helix and zinc finger motifs in the binding of IS1 transposase to terminal inverted repeats.
    Ohta S; Yoshimura E; Ohtsubo E
    Mol Microbiol; 2004 Jul; 53(1):193-202. PubMed ID: 15225314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.
    Tobiason DM; Buchner JM; Thiel WH; Gernert KM; Karls AC
    Mol Microbiol; 2001 Feb; 39(3):641-51. PubMed ID: 11169105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit.
    Harmer CJ; Hall RM
    mBio; 2015 Dec; 6(6):e01866-15. PubMed ID: 26646012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.