BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31486769)

  • 1. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain.
    Robinson BG; Cai X; Wang J; Bunzow JR; Williams JT; Kaeser PS
    Elife; 2019 Sep; 8():. PubMed ID: 31486769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites.
    Liu C; Kershberg L; Wang J; Schneeberger S; Kaeser PS
    Cell; 2018 Feb; 172(4):706-718.e15. PubMed ID: 29398114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatodendritic dopamine release: recent mechanistic insights.
    Rice ME; Patel JC
    Philos Trans R Soc Lond B Biol Sci; 2015 Jul; 370(1672):. PubMed ID: 26009764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron.
    Hikima T; Lee CR; Witkovsky P; Chesler J; Ichtchenko K; Rice ME
    Cell Rep; 2021 Apr; 35(1):108951. PubMed ID: 33826884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptotagmin-1 is a Ca
    Lebowitz JJ; Banerjee A; Qiao C; Bunzow JR; Williams JT; Kaeser PS
    Cell Rep; 2023 Jan; 42(1):111915. PubMed ID: 36640316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine.
    Nirenberg MJ; Chan J; Liu Y; Edwards RH; Pickel VM
    J Neurosci; 1996 Jul; 16(13):4135-45. PubMed ID: 8753875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal somatodendritic dopamine release requires snare proteins.
    Fortin GD; Desrosiers CC; Yamaguchi N; Trudeau LE
    J Neurochem; 2006 Mar; 96(6):1740-9. PubMed ID: 16539689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An action potential initiation mechanism in distal axons for the control of dopamine release.
    Liu C; Cai X; Ritzau-Jost A; Kramer PF; Li Y; Khaliq ZM; Hallermann S; Kaeser PS
    Science; 2022 Mar; 375(6587):1378-1385. PubMed ID: 35324301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of axonal and somatodendritic dopamine release using in vivo dialysis.
    Kalivas PW; Duffy P
    J Neurochem; 1991 Mar; 56(3):961-7. PubMed ID: 1993900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of synaptotagmins 4 and 7 in activity-dependent somatodendritic dopamine release in the ventral midbrain.
    Delignat-Lavaud B; Ducrot C; Kouwenhoven W; Feller N; Trudeau LÉ
    Open Biol; 2022 Mar; 12(3):210339. PubMed ID: 35232250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum.
    Cragg SJ; Greenfield SA
    J Neurosci; 1997 Aug; 17(15):5738-46. PubMed ID: 9221772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum.
    Chen BT; Rice ME
    J Neurosci; 2001 Oct; 21(19):7841-7. PubMed ID: 11567075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain.
    Bustos G; Abarca J; Campusano J; Bustos V; Noriega V; Aliaga E
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):126-44. PubMed ID: 15572168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent.
    Cobb WS; Abercrombie ED
    Neuroscience; 2003; 119(3):777-86. PubMed ID: 12809698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic immunolabeling of transporters and receptors identifies transmitter-specific functional sites envisioned in Cajal's neuron.
    Pickel VM; Garzón M; Mengual E
    Prog Brain Res; 2002; 136():145-55. PubMed ID: 12143378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.
    Acuna C; Liu X; Gonzalez A; Südhof TC
    Neuron; 2015 Sep; 87(6):1234-1247. PubMed ID: 26402606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta.
    Yee AG; Forbes B; Cheung PY; Martini A; Burrell MH; Freestone PS; Lipski J
    J Neurochem; 2019 Feb; 148(4):462-479. PubMed ID: 30203851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA receptors potentiate activity-dependent dendritic release of neuropeptides from hypothalamic neurons.
    Pitra S; Zhang M; Cauley E; Stern JE
    J Physiol; 2019 Mar; 597(6):1735-1756. PubMed ID: 30629746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphetamine-induced and spontaneous release of dopamine from A9 and A10 cell dendrites: an in vitro electrophysiological study in the mouse.
    Bernardini GL; Gu X; Viscardi E; German DC
    J Neural Transm Gen Sect; 1991; 84(3):183-93. PubMed ID: 1679335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation.
    Collo G; Zanetti S; Missale C; Spano P
    Eur J Neurosci; 2008 Oct; 28(7):1231-40. PubMed ID: 18973551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.