These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31487108)

  • 1. Improving the Understanding of the Redox Properties of Fluoranil Derivatives for Cathodes in Sodium-Ion Batteries.
    Jung KH; Jeong GS; Joo JB; Kim KC
    ChemSusChem; 2019 Nov; 12(22):4968-4975. PubMed ID: 31487108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrenetetrone Derivatives Tailored by Nitrogen Dopants for High-Potential Cathodes in Lithium-Ion Batteries.
    Go CY; Jeong GS; Kim KC
    iScience; 2019 Nov; 21():206-216. PubMed ID: 31671332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights on Redox Properties of Sumanene Derivatives for High-Performance Organic Cathodes.
    Jung KH; Kim KC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8333-8341. PubMed ID: 31977171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored Design of Electrochemically Degradable Anthraquinone Functionality toward Organic Cathodes.
    Go CY; Jang SS; Kim KC
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35729-35738. PubMed ID: 34288644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na
    Zhang X; Rui X; Chen D; Tan H; Yang D; Huang S; Yu Y
    Nanoscale; 2019 Feb; 11(6):2556-2576. PubMed ID: 30672554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of triphenylphosphine organic compounds constructed with O, S, and Se in aluminum ion batteries.
    Lu Y; Wu G; Zhao X; Wang X; Zhang W; Li Z
    J Colloid Interface Sci; 2023 Dec; 651():296-303. PubMed ID: 37542904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free standing reduced graphene oxide film cathodes for lithium ion batteries.
    Ha SH; Jeong YS; Lee YJ
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12295-303. PubMed ID: 24229056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifluorite-type Na
    Thøgersen RV; Bianchini F; Fjellvåg H; Vajeeston P
    RSC Adv; 2022 Jun; 12(27):17410-17421. PubMed ID: 35765445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Mn
    Lee J; Kitchaev DA; Kwon DH; Lee CW; Papp JK; Liu YS; Lun Z; Clément RJ; Shi T; McCloskey BD; Guo J; Balasubramanian M; Ceder G
    Nature; 2018 Apr; 556(7700):185-190. PubMed ID: 29643482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.
    Senthilkumar ST; Bae H; Han J; Kim Y
    Angew Chem Int Ed Engl; 2018 May; 57(19):5335-5339. PubMed ID: 29516600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.