BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31487161)

  • 1. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins.
    Pavlíková Přecechtělová J; Mládek A; Zapletal V; Hritz J
    J Chem Theory Comput; 2019 Oct; 15(10):5642-5658. PubMed ID: 31487161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach.
    Bakker MJ; Mládek A; Semrád H; Zapletal V; Pavlíková Přecechtělová J
    Phys Chem Chem Phys; 2022 Nov; 24(45):27678-27692. PubMed ID: 36373847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules.
    Swails J; Zhu T; He X; Case DA
    J Biomol NMR; 2015 Oct; 63(2):125-39. PubMed ID: 26232926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
    Yao X; Becker S; Zweckstetter M
    J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Fragmentation Quantum Mechanical Calculation of
    Zhang J; Kriebel CN; Wan Z; Shi M; Glaubitz C; He X
    J Chem Theory Comput; 2023 Oct; 19(20):7405-7422. PubMed ID: 37788419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range.
    Hendus-Altenburger R; Fernandes CB; Bugge K; Kunze MBA; Boomsma W; Kragelund BB
    J Biomol NMR; 2019 Dec; 73(12):713-725. PubMed ID: 31598803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated fragmentation quantum mechanical calculation of
    Shi M; Jin X; Wan Z; He X
    J Chem Phys; 2021 Feb; 154(6):064502. PubMed ID: 33588539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence.
    Chen TC; Hsiao CL; Huang SJ; Huang JR
    Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.
    Louša P; Nedozrálová H; Župa E; Nováček J; Hritz J
    Biophys Chem; 2017 Apr; 223():25-29. PubMed ID: 28282625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating Intrinsically Disordered Protein Conformational Ensembles from a Database of Ramachandran Space Pair Residue Probabilities Using a Markov Chain.
    Cukier RI
    J Phys Chem B; 2018 Oct; 122(39):9087-9101. PubMed ID: 30204435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins.
    Nielsen JT; Mulder FAA
    J Biomol NMR; 2018 Mar; 70(3):141-165. PubMed ID: 29399725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.