These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31487161)

  • 21. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins.
    Nielsen JT; Mulder FAA
    J Biomol NMR; 2018 Mar; 70(3):141-165. PubMed ID: 29399725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosine phosphorylation within the intrinsically disordered cytosolic domains of the B-cell receptor: an NMR-based structural analysis.
    Rosenlöw J; Isaksson L; Mayzel M; Lengqvist J; Orekhov VY
    PLoS One; 2014; 9(4):e96199. PubMed ID: 24769851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Well-Balanced Force Field
    Zhang Y; Liu H; Yang S; Luo R; Chen HF
    J Chem Theory Comput; 2019 Dec; 15(12):6769-6780. PubMed ID: 31657215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Closing the Gap: Quantum Mechanical Calculations and Experimentally Measured Chemical Shifts of a Microcrystalline Lectin.
    Fritz M; Quinn CM; Wang M; Hou G; Lu X; Koharudin LMI; Polenova T; Gronenborn AM
    J Phys Chem B; 2017 Apr; 121(15):3574-3585. PubMed ID: 28001418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsically disordered protein-specific force field CHARMM36IDPSFF.
    Liu H; Song D; Lu H; Luo R; Chen HF
    Chem Biol Drug Des; 2018 Oct; 92(4):1722-1735. PubMed ID: 29808548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically Disordered Proteins.
    Rieloff E; Skepö M
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
    Bratholm LA; Jensen JH
    Chem Sci; 2017 Mar; 8(3):2061-2072. PubMed ID: 28451325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins.
    Piai A; Gonnelli L; Felli IC; Pierattelli R; Kazimierczuk K; Grudziąż K; Koźmiński W; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2016 Mar; 64(3):239-53. PubMed ID: 26891900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins - Lessons from the sodium proton exchanger 1 (NHE1).
    Hendus-Altenburger R; Lambrughi M; Terkelsen T; Pedersen SF; Papaleo E; Lindorff-Larsen K; Kragelund BB
    Cell Signal; 2017 Sep; 37():40-51. PubMed ID: 28554535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus chemical shifts in a nucleic acid backbone from combined molecular dynamics and density functional calculations.
    Přecechtělová J; Novák P; Munzarová ML; Kaupp M; Sklenář V
    J Am Chem Soc; 2010 Dec; 132(48):17139-48. PubMed ID: 21073198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.
    Zhu T; He X; Zhang JZ
    Phys Chem Chem Phys; 2012 Jun; 14(21):7837-45. PubMed ID: 22314755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative Protein Disorder Assessment Using NMR Chemical Shifts.
    Nielsen JT; Mulder FAA
    Methods Mol Biol; 2020; 2141():303-317. PubMed ID: 32696364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and Dynamics of Intrinsically Disordered Proteins.
    Fu B; Vendruscolo M
    Adv Exp Med Biol; 2015; 870():35-48. PubMed ID: 26387099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins.
    Srb P; Nováček J; Kadeřávek P; Rabatinová A; Krásný L; Žídková J; Bobálová J; Sklenář V; Žídek L
    J Biomol NMR; 2017 Nov; 69(3):133-146. PubMed ID: 29071460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of the conformational preference and dynamics of the intrinsically disordered N-terminal region of Beclin 1 by NMR spectroscopy.
    Yao S; Lee EF; Pettikiriarachchi A; Evangelista M; Keizer DW; Fairlie WD
    Biochim Biophys Acta; 2016 Sep; 1864(9):1128-1137. PubMed ID: 27288992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR; Salmon L; Nodet G; Blackledge M
    J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale.
    Tuttle T
    J Phys Chem A; 2009 Oct; 113(43):11723-33. PubMed ID: 19630417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model.
    Zhu T; Zhang JZ; He X
    J Chem Theory Comput; 2013 Apr; 9(4):2104-14. PubMed ID: 26583557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New force field on modeling intrinsically disordered proteins.
    Wang W; Ye W; Jiang C; Luo R; Chen HF
    Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.