These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31487161)

  • 41. Phosphorylation of an intrinsically disordered segment in Ets1 shifts conformational sampling toward binding-competent substates.
    Bui JM; Gsponer J
    Structure; 2014 Aug; 22(8):1196-1203. PubMed ID: 25017730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.
    Karp JM; Eryilmaz E; Cowburn D
    J Biomol NMR; 2015 Jan; 61(1):35-45. PubMed ID: 25416617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series.
    Towse CL; Vymetal J; Vondrasek J; Daggett V
    Biophys J; 2016 Jan; 110(2):348-361. PubMed ID: 26789758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using
    Okazaki H; Matsuo N; Tenno T; Goda N; Shigemitsu Y; Ota M; Hiroaki H
    Protein Sci; 2018 Oct; 27(10):1821-1830. PubMed ID: 30098073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient helicity in intrinsically disordered Axin-1 studied by NMR spectroscopy and molecular dynamics simulations.
    Bomblies R; Luitz MP; Scanu S; Madl T; Zacharias M
    PLoS One; 2017; 12(3):e0174337. PubMed ID: 28355271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating amber force fields using computed NMR chemical shifts.
    Koes DR; Vries JK
    Proteins; 2017 Oct; 85(10):1944-1956. PubMed ID: 28688107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deducing the functional characteristics of the human selenoprotein SELK from the structural properties of its intrinsically disordered C-terminal domain.
    Polo A; Colonna G; Guariniello S; Ciliberto G; Costantini S
    Mol Biosyst; 2016 Mar; 12(3):758-72. PubMed ID: 26735936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational dependence of chemical shifts in the proline rich region of TAU protein.
    Stöckelmaier J; Oostenbrink C
    Phys Chem Chem Phys; 2024 Sep; 26(36):23856-23870. PubMed ID: 39230359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-dimensional NMR methods for intrinsically disordered proteins studies.
    Grudziąż K; Zawadzka-Kazimierczuk A; Koźmiński W
    Methods; 2018 Sep; 148():81-87. PubMed ID: 29705209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proline Fingerprint in Intrinsically Disordered Proteins.
    Murrali MG; Piai A; Bermel W; Felli IC; Pierattelli R
    Chembiochem; 2018 Aug; 19(15):1625-1629. PubMed ID: 29790640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dispersion from C
    Tossavainen H; Salovaara S; Hellman M; Ihalin R; Permi P
    J Biomol NMR; 2020 Mar; 74(2-3):147-159. PubMed ID: 31932991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments.
    Milles S; Salvi N; Blackledge M; Jensen MR
    Prog Nucl Magn Reson Spectrosc; 2018 Dec; 109():79-100. PubMed ID: 30527137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
    Salvi N; Abyzov A; Blackledge M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins.
    Gao Y; Zhang C; Zhang JZ; Mei Y
    J Chem Inf Model; 2017 Feb; 57(2):267-274. PubMed ID: 28095698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using
    Nguyen QNN; Schwochert J; Tantillo DJ; Lokey RS
    Phys Chem Chem Phys; 2018 May; 20(20):14003-14012. PubMed ID: 29744489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Use of
    Cook EC; Usher GA; Showalter SA
    Methods Enzymol; 2018; 611():81-100. PubMed ID: 30471706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.
    Christensen AS; Linnet TE; Borg M; Boomsma W; Lindorff-Larsen K; Hamelryck T; Jensen JH
    PLoS One; 2013; 8(12):e84123. PubMed ID: 24391900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins.
    Brázda P; Šedo O; Kubíček K; Štefl R
    Biotechniques; 2019 Jul; 67(1):16-22. PubMed ID: 31092000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.