These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31487282)

  • 1. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The musculotendinous system of an anguilliform swimmer: Muscles, myosepta, dermis, and their interconnections in Anguilla rostrata.
    Danos N; Fisch N; Gemballa S
    J Morphol; 2008 Jan; 269(1):29-44. PubMed ID: 17886889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and simulation of fish swimming with active muscles.
    Curatolo M; Teresi L
    J Theor Biol; 2016 Nov; 409():18-26. PubMed ID: 27552851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
    Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL
    Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish swimming: patterns in muscle function.
    Altringham JD; Ellerby DJ
    J Exp Biol; 1999 Dec; 202(Pt 23):3397-403. PubMed ID: 10562522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming.
    Ramananarivo S; Godoy-Diana R; Thiria B
    J R Soc Interface; 2013 Nov; 10(88):20130667. PubMed ID: 23985737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers.
    McMillen T; Williams T; Holmes P
    PLoS Comput Biol; 2008 Aug; 4(8):e1000157. PubMed ID: 18769734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical insights into optimality and resonance in fish swimming.
    Kohannim S; Iwasaki T
    J R Soc Interface; 2014 Mar; 11(92):20131073. PubMed ID: 24430125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
    Lucas KN; Lauder GV; Tytell ED
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An elastic rod model for anguilliform swimming.
    McMillen T; Holmes P
    J Math Biol; 2006 Nov; 53(5):843-86. PubMed ID: 16972099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force transmission via axial tendons in undulating fish: a dynamic analysis.
    Long JH; Adcock B; Root RG
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):911-29. PubMed ID: 12485683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
    Tytell ED; Hsu CY; Williams TL; Cohen AH; Fauci LJ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19832-7. PubMed ID: 21037110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics.
    Pedley TJ; Hill SJ
    J Exp Biol; 1999 Dec; 202(Pt 23):3431-8. PubMed ID: 10562526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.
    Chen J; Friesen WO; Iwasaki T
    J Exp Biol; 2012 Jan; 215(Pt 2):211-9. PubMed ID: 22189764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of high-performance swimming in sharks: transformations of the musculotendinous system from subcarangiform to thunniform swimmers.
    Gemballa S; Konstantinidis P; Donley JM; Sepulveda C; Shadwick RE
    J Morphol; 2006 Apr; 267(4):477-93. PubMed ID: 16429422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.
    Xiong G; Lauder GV
    Zoology (Jena); 2014 Aug; 117(4):269-81. PubMed ID: 24925455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.