These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31487330)

  • 1. Functional androdioecy in the ornamental shrub Osmanthus delavayi (Oleaceae).
    Duan Y; Li W; Zheng S; Sylvester SP; Li Y; Cai F; Zhang C; Wang X
    PLoS One; 2019; 14(9):e0221898. PubMed ID: 31487330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Male-biased hermaphrodites in a gynodioecious shrub, Daphne jezoensis.
    Sinclair JP; Kameyama Y; Shibata A; Kudo G
    Plant Biol (Stuttg); 2016 Sep; 18(5):859-67. PubMed ID: 27090773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollen limitation and the evolution of androdioecy from dioecy.
    Wolf DE; Takebayashi N
    Am Nat; 2004 Jan; 163(1):122-37. PubMed ID: 14767842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae.
    Vernet P; Lepercq P; Billiard S; Bourceaux A; Lepart J; Dommée B; Saumitou-Laprade P
    New Phytol; 2016 Jun; 210(4):1408-17. PubMed ID: 26833140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans.
    Duan YF; Zhang C; Zhang M; Ye Y; Zhang KL; Chen MX; Chen L; Wang XR; Zhu FY
    BMC Plant Biol; 2021 Oct; 21(1):468. PubMed ID: 34645403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-incompatibility system explains high male frequencies in an androdioecious plant.
    Saumitou-Laprade P; Vernet P; Vassiliadis C; Hoareau Y; de Magny G; Dommée B; Lepart J
    Science; 2010 Mar; 327(5973):1648-50. PubMed ID: 20339074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-locus model of androdioecy with two homomorphic self-incompatibility groups: expected vs. observed male frequencies.
    Husse L; Billiard S; Lepart J; Vernet P; Saumitou-Laprade P
    J Evol Biol; 2013 Jun; 26(6):1269-80. PubMed ID: 23662852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional androdioecy in critically endangered Gymnocladus assamicus (Leguminosae) in the Eastern Himalayan Region of Northeast India.
    Choudhury BI; Khan ML; Dayanandan S
    PLoS One; 2014; 9(2):e87287. PubMed ID: 24586267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the High Proportion of Males in a Population of the Self-Incompatible
    Sakio H; Nirei T
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in female reproductive success between female and hermaphrodite individuals in the subdioecious shrub Eurya japonica (Theaceae).
    Wang H; Matsushita M; Tomaru N; Nakagawa M
    Plant Biol (Stuttg); 2015 Jan; 17(1):194-200. PubMed ID: 24841823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Incompatibility and Male Fertilization Success in Phillyrea angustifolia (Oleaceae).
    Vassiliadis C; Lepart J; Saumitou-Laprade P; Vernet P
    Int J Plant Sci; 2000 May; 161(3):393-402. PubMed ID: 10817975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High male reproductive success of hermaphrodites in the androdioecious Phillyrea angustifolia.
    Vassiliadis C; Saumitou-Laprade P; Lepart J; Viard F
    Evolution; 2002 Jul; 56(7):1362-73. PubMed ID: 12206238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional variation in sex ratios and sex allocation in androdioecious Mercurialis annua.
    Pannell JR; Eppley SM; Dorken ME; Berjano R
    J Evol Biol; 2014 Jul; 27(7):1467-77. PubMed ID: 24618014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selfish male-determining element favors the transition from hermaphroditism to androdioecy.
    Billiard S; Husse L; Lepercq P; Godé C; Bourceaux A; Lepart J; Vernet P; Saumitou-Laprade P
    Evolution; 2015 Mar; 69(3):683-93. PubMed ID: 25643740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-specific reproductive components and pollination ecology in the subdioecious shrub Fuchsia microphylla.
    Cuevas E; Jiménez R; Lopezaraiza-Mikel M
    Plant Biol (Stuttg); 2014 Nov; 16(6):1096-103. PubMed ID: 24629010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Floral syndrome and breeding system of Corydalis edulis].
    Xia Q; Zhou S; Zhang D; Chao T
    Zhongguo Zhong Yao Za Zhi; 2012 May; 37(9):1191-6. PubMed ID: 22803358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral closure induced by pollination in gynodioecious Cyananthus delavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences.
    Niu Y; Yang Y; Zhang ZQ; Li ZM; Sun H
    Ann Bot; 2011 Nov; 108(7):1257-68. PubMed ID: 21900256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex allocation in gynodioecious Cyananthus delavayi differs between gender morphs and soil quality.
    Chen J; Niu Y; Li Z; Yang Y; Sun H
    Plant Reprod; 2017 Jun; 30(2):107-117. PubMed ID: 28597166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and evolution of deceptive pollination in orchids.
    Jersáková J; Johnson SD; Kindlmann P
    Biol Rev Camb Philos Soc; 2006 May; 81(2):219-35. PubMed ID: 16677433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?
    Dart S; Eckert CG
    Ann Bot; 2015 Feb; 115(2):315-26. PubMed ID: 25538114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.