These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31487460)

  • 1. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Lattice Resonances in 2.5-Dimensional Periodic Arrays with Achiral Unit Cells.
    Cerdán L; Zundel L; Manjavacas A
    ACS Photonics; 2023 Jun; 10(6):1925-1935. PubMed ID: 37363634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Resonances Excited by Finite-Width Light Beams.
    Zundel L; Deop-Ruano JR; Martinez-Herrero R; Manjavacas A
    ACS Omega; 2022 Sep; 7(35):31431-31441. PubMed ID: 36092601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal Incidence Excitation of Out-of-Plane Lattice Resonances in Bipartite Arrays of Metallic Nanostructures.
    Alvarez-Serrano JJ; Deop-Ruano JR; Aglieri V; Toma A; Manjavacas A
    ACS Photonics; 2024 Jan; 11(1):301-309. PubMed ID: 38344384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole-lattice nanoparticle resonances in finite arrays.
    Karimi V; Babicheva VE
    Opt Express; 2023 May; 31(10):16857-16871. PubMed ID: 37157755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays.
    Kataja M; Hakala TK; Julku A; Huttunen MJ; van Dijken S; Törmä P
    Nat Commun; 2015 May; 6():7072. PubMed ID: 25947368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence.
    Verhagen E; Kuipers L; Polman A
    Opt Express; 2009 Aug; 17(17):14586-98. PubMed ID: 19687938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods.
    Rodriguez SR; Janssen OT; Lozano G; Omari A; Hens Z; Rivas JG
    Opt Lett; 2013 Apr; 38(8):1238-40. PubMed ID: 23595444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra.
    Juodėnas M; Tamulevičius T; Henzie J; Erts D; Tamulevičius S
    ACS Nano; 2019 Aug; 13(8):9038-9047. PubMed ID: 31329417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays.
    Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z
    Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles.
    Hasegawa M; Watanabe K; Namigata H; Welling TAJ; Suga K; Nagao D
    J Colloid Interface Sci; 2023 Mar; 633():226-232. PubMed ID: 36446215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Assembly of Optoplasmonic Hetero-nanoparticle Arrays with Tunable Photonic-Plasmonic Resonances.
    Hong Y; Qiu Y; Chen T; Reinhard BM
    Adv Funct Mater; 2014 Feb; 24(6):739-746. PubMed ID: 30245611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.