BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31487595)

  • 21. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.
    Zhou YL; Yang Y; Chen M; Zhao ZW; Jiang HL
    Bioresour Technol; 2014 May; 159():232-9. PubMed ID: 24657753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Bioresour Technol; 2014 Mar; 155():84-90. PubMed ID: 24434698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater.
    Yang J; Zhao YG; Liu X; Fu Y
    Mar Pollut Bull; 2022 Sep; 182():114013. PubMed ID: 35939936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals.
    Wang SH; Wang JW; Zhao LT; Abbas SZ; Yang Z; Yong YC
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells.
    Jeon HJ; Seo KW; Lee SH; Yang YH; Kumaran RS; Kim S; Hong SW; Choi YS; Kim HJ
    Bioresour Technol; 2012 Apr; 109():308-11. PubMed ID: 21724390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
    Neethu B; Ghangrekar MM
    Water Sci Technol; 2017 Dec; 76(11-12):3269-3277. PubMed ID: 29236006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel method to immobilize phosphate in lakes using sediment microbial fuel cells.
    Haxthausen KAV; Lu X; Zhang Y; Gosewinkel U; Petersen DG; Marzocchi U; Brock AL; Trapp S
    Water Res; 2021 Jun; 198():117108. PubMed ID: 33901841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sediment pretreatment on the performance of sediment microbial fuel cells.
    Song TS; Jiang HL
    Bioresour Technol; 2011 Nov; 102(22):10465-70. PubMed ID: 21967718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity.
    Xia C; Xu M; Liu J; Guo J; Yang Y
    Bioresour Technol; 2015 Aug; 190():420-3. PubMed ID: 25936443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of organic matter and electricity generation of sediments from Progreso, Yucatan, Mexico, in a sediment microbial fuel cell.
    González-Gamboa NK; Valdés-Lozano DS; Barahona-Pérez LF; Alzate-Gaviria L; Domínguez-Maldonado JA
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5868-5876. PubMed ID: 28063086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone.
    Prasad J; Tripathi RK
    Biosens Bioelectron; 2021 Jan; 172():112767. PubMed ID: 33126178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex Interactions Between the Macrophyte Acorus Calamus and Microbial Fuel Cells During Pyrene and Benzo[a]Pyrene Degradation in Sediments.
    Yan Z; Jiang H; Cai H; Zhou Y; Krumholz LR
    Sci Rep; 2015 May; 5():10709. PubMed ID: 26023748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds.
    Wu Q; Liu J; Li Q; Mo W; Wan R; Peng S
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36012057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Water Sci Technol; 2013; 68(3):537-43. PubMed ID: 23925180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC).
    Kabutey FT; Ding J; Zhao Q; Antwi P; Quashie FK; Tankapa V; Zhang W
    Bioelectrochemistry; 2019 Aug; 128():241-251. PubMed ID: 31035233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.
    Yang Q; Zhao H; Zhao N; Ni J; Gu X
    Bioresour Technol; 2016 Sep; 216():182-7. PubMed ID: 27240233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time monitoring of subsurface microbial metabolism with graphite electrodes.
    Wardman C; Nevin KP; Lovley DR
    Front Microbiol; 2014; 5():621. PubMed ID: 25484879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode.
    An J; Kim B; Nam J; Ng HY; Chang IS
    Bioresour Technol; 2013 Jan; 127():138-42. PubMed ID: 23131634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of overlying water aeration system powered by sediment-microbial-fuel-cell for nutrient suppression.
    Matsuki M; Hirakawa S
    Water Sci Technol; 2023 May; 87(10):2553-2563. PubMed ID: 37257109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.