BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31487616)

  • 21. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis.
    Kato T; Azegami J; Yokomori A; Dohra H; El Enshasy HA; Park EY
    BMC Genomics; 2020 Apr; 21(1):319. PubMed ID: 32326906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of
    Tran TNT; Breuer RJ; Avanasi Narasimhan R; Parreiras LS; Zhang Y; Sato TK; Durrett TP
    Biotechnol Biofuels; 2017; 10():69. PubMed ID: 28331545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates.
    Díaz T; Fillet S; Campoy S; Vázquez R; Viña J; Murillo J; Adrio JL
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3287-3300. PubMed ID: 29464324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomes of Ashbya fungi isolated from insects reveal four mating-type loci, numerous translocations, lack of transposons, and distinct gene duplications.
    Dietrich FS; Voegeli S; Kuo S; Philippsen P
    G3 (Bethesda); 2013 Aug; 3(8):1225-39. PubMed ID: 23749448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation.
    Zhang S; Ito M; Skerker JM; Arkin AP; Rao CV
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9393-9405. PubMed ID: 27678117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2.
    Baptista SL; Cunha JT; Romaní A; Domingues L
    Bioresour Technol; 2018 Nov; 267():481-491. PubMed ID: 30041142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential selection on gene translation efficiency between the filamentous fungus Ashbya gossypii and yeasts.
    Jiang H; Zhang Y; Sun J; Wang W; Gu Z
    BMC Evol Biol; 2008 Dec; 8():343. PubMed ID: 19111070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway.
    Aguiar TQ; Maaheimo H; Heiskanen A; Wiebe MG; Penttilä M; Domingues L
    Carbohydr Res; 2013 Nov; 381():19-27. PubMed ID: 24056010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed.
    Yan J; Han B; Gui X; Wang G; Xu L; Yan Y; Madzak C; Pan D; Wang Y; Zha G; Jiao L
    Sci Rep; 2018 Jan; 8(1):758. PubMed ID: 29335453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.
    Costa CE; Romaní A; Cunha JT; Johansson B; Domingues L
    Bioresour Technol; 2017 Mar; 227():24-34. PubMed ID: 28013133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.
    Silva R; Aguiar TQ; Domingues L
    J Biotechnol; 2015 Jan; 193():37-40. PubMed ID: 25444878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Microbial production of poly (glycolate-co-lactate-co-3-hydroxybutyrate) from glucose and xylose by Escherichia coli].
    Da Y; Li W; Shi L; Li Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Feb; 35(2):254-262. PubMed ID: 30806055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of cis-aconitate decarboxylase and trans-aconitate metabolism in riboflavin-producing filamentous Ashbya gossypii.
    Sugimoto T; Kato T; Park EY
    J Biosci Bioeng; 2014 May; 117(5):563-8. PubMed ID: 24315530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production.
    Dey P; Maiti MK
    J Appl Microbiol; 2013 May; 114(5):1357-68. PubMed ID: 23311514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.