These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31487696)
1. The role of multiple ionization of H Bachi N; Otranto S; Otero GS; Olson RE Phys Med Biol; 2019 Oct; 64(20):205020. PubMed ID: 31487696 [TBL] [Abstract][Full Text] [Related]
2. Ionization Cross Sections of Hydrogen Molecule by Electron and Positron Impact. Tőkési K; DuBois RD Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542384 [TBL] [Abstract][Full Text] [Related]
3. A Monte Carlo code for the simulation of heavy-ion tracks in water. Champion C; L'hoir A; Politis MF; Fainstein PD; Rivarola RD; Chetioui A Radiat Res; 2005 Feb; 163(2):222-31. PubMed ID: 15658899 [TBL] [Abstract][Full Text] [Related]
4. Cross sections for bare and dressed carbon ions in water and neon. Liamsuwan T; Nikjoo H Phys Med Biol; 2013 Feb; 58(3):641-72. PubMed ID: 23318561 [TBL] [Abstract][Full Text] [Related]
5. A model of carbon ion interactions in water using the classical trajectory Monte Carlo method. Liamsuwan T; Uehara S; Emfietzoglou D; Nikjoo H Radiat Prot Dosimetry; 2011 Feb; 143(2-4):152-5. PubMed ID: 21106637 [TBL] [Abstract][Full Text] [Related]
6. Development of a Monte Carlo track structure code for low-energy protons in water. Uehara S; Toburen LH; Nikjoo H Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921 [TBL] [Abstract][Full Text] [Related]
7. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale. Bäckström G; Galassi ME; Tilly N; Ahnesjö A; Fernández-Varea JM Med Phys; 2013 Jun; 40(6):064101. PubMed ID: 23718619 [TBL] [Abstract][Full Text] [Related]
8. Charge transfer and ionisation by intermediate-energy heavy ions. Toburen LH; McLawhorn SL; McLawhorn RA; Evans NL; Justiniano EL; Shinpaugh JL; Schultz DR; Reinhold CO Radiat Prot Dosimetry; 2006; 122(1-4):22-5. PubMed ID: 17132666 [TBL] [Abstract][Full Text] [Related]
9. Energy-loss straggling algorithms for Monte Carlo electron transport. Chibani O Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312 [TBL] [Abstract][Full Text] [Related]
10. Charge Transfer and Electron Production in Proton Collisions with Uracil: A Classical and Semiclassical Study. Illescas C; Méndez L; Bernedo S; Rabadán I Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768496 [TBL] [Abstract][Full Text] [Related]
11. A Monte Carlo track structure code for electrons (approximately 10 eV-10 keV) and protons (approximately 0.3-10 MeV) in water: partitioning of energy and collision events. Emfietzoglou D; Papamichael G; Kostarelos K; Moscovitch M Phys Med Biol; 2000 Nov; 45(11):3171-94. PubMed ID: 11098897 [TBL] [Abstract][Full Text] [Related]
12. Ionization and electron capture in ion-molecule collisions: classical (CTMC) and semiclassical calculations. Errea LF; Illescas C; Méndez L; Rabadán I Appl Radiat Isot; 2014 Jan; 83 Pt B():86-90. PubMed ID: 23415105 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values. Tessaro VB; Gervais B; Poignant F; Beuve M; Galassi ME Phys Med; 2021 Aug; 88():71-85. PubMed ID: 34198025 [TBL] [Abstract][Full Text] [Related]
14. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description. Madsen JR; Akabani G Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979 [TBL] [Abstract][Full Text] [Related]
15. Theoretical cross sections for electron collisions in water: structure of electron tracks. Champion C Phys Med Biol; 2003 Jul; 48(14):2147-68. PubMed ID: 12894976 [TBL] [Abstract][Full Text] [Related]
16. Calculation of electron interaction models in N Nicolanti F; Caccia B; Cartoni A; Emfietzoglou D; Faccini R; Incerti S; Kyriakou I; Satta M; Tran HN; Mancini-Terracciano C Phys Med; 2023 Oct; 114():102661. PubMed ID: 37703804 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621 [TBL] [Abstract][Full Text] [Related]
18. Electron collisions with the HCOOH···(H2O)n complexes (n = 1, 2) in liquid phase: the influence of microsolvation on the π* resonance of formic acid. Freitas TC; Coutinho K; Varella MT; Lima MA; Canuto S; Bettega MH J Chem Phys; 2013 May; 138(17):174307. PubMed ID: 23656134 [TBL] [Abstract][Full Text] [Related]
19. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT. Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534 [TBL] [Abstract][Full Text] [Related]
20. Single and multiple cross sections for ionizing processes of biological molecules by protons and alpha-particle impact: a classical Monte Carlo approach. Abbas I; Champion C; Zarour B; Lasri B; Hanssen J Phys Med Biol; 2008 Feb; 53(4):N41-51. PubMed ID: 18263940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]