These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31487696)
21. An improved energy-range relationship for high-energy electron beams based on multiple accurate experimental and Monte Carlo data sets. Sorcini BB; Andreo P; Bielajew AF; Hyödynmaa S; Brahme A Phys Med Biol; 1995 Jul; 40(7):1135-59. PubMed ID: 7568374 [TBL] [Abstract][Full Text] [Related]
22. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keV u(-1)-10 MeV u(-1) in water. Liamsuwan T; Nikjoo H Phys Med Biol; 2013 Feb; 58(3):673-701. PubMed ID: 23318579 [TBL] [Abstract][Full Text] [Related]
23. Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4-DNA. Baba K; Kusumoto T; Okada S; Ogawara R; Kodaira S; Raffy Q; Barillon R; Ludwig N; Galindo C; Peaupardin P; Ishikawa M Sci Rep; 2021 Jan; 11(1):1524. PubMed ID: 33452450 [TBL] [Abstract][Full Text] [Related]
24. Low-energy electron penetration range in liquid water. Meesungnoen J; Jay-Gerin JP; Filali-Mouhim A; Mankhetkorn S Radiat Res; 2002 Nov; 158(5):657-60. PubMed ID: 12385644 [TBL] [Abstract][Full Text] [Related]
25. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Champion C; Le Loirec C Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099 [TBL] [Abstract][Full Text] [Related]
26. Calculations of heavy-ion track structure. Krämer M; Kraft G Radiat Environ Biophys; 1994; 33(2):91-109. PubMed ID: 7938440 [TBL] [Abstract][Full Text] [Related]
27. The Strong Enhancement of Electron-Impact Ionization Processes in Dense Plasma by Transient Spatial Localization. Zeng J; Ye C; Liu P; Gao C; Li Y; Yuan J Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682711 [TBL] [Abstract][Full Text] [Related]
28. An energy-loss model for low- and intermediate-energy carbon projectiles in water. Liamsuwan T; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):45-9. PubMed ID: 21913814 [TBL] [Abstract][Full Text] [Related]
29. Monte Carlo simulation of water radiolysis for low-energy charged particles. Uehara S; Nikjoo H J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920 [TBL] [Abstract][Full Text] [Related]
30. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections. Wiklund K; Olivera GH; Brahme A; Lind BK Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149 [TBL] [Abstract][Full Text] [Related]
31. Secondary particle production in tissue-like and shielding materials for light and heavy ions calculated with the Monte-Carlo code SHIELD-HIT. Gudowska I; Andreo P; Sobolevsky N J Radiat Res; 2002 Dec; 43 Suppl():S93-7. PubMed ID: 12793738 [TBL] [Abstract][Full Text] [Related]
32. Radial dose distributions for ions in arbitrary matter. Liu B; Cai L; Bai P; Peng W Radiat Prot Dosimetry; 2012 Jun; 150(2):239-44. PubMed ID: 22003185 [TBL] [Abstract][Full Text] [Related]
33. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function. Emfietzoglou D; Papamichael G; Nikjoo H Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774 [TBL] [Abstract][Full Text] [Related]
34. Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: a quantitative analysis based on Monte Carlo simulations. Ballarini F; Biaggi M; Merzagora M; Ottolenghi A; Dingfelder M; Friedland W; Jacob P; Paretzke HG Radiat Environ Biophys; 2000 Sep; 39(3):179-88. PubMed ID: 11095148 [TBL] [Abstract][Full Text] [Related]
35. Cross section calculations for electron scattering from DNA and RNA bases. Moejko P; Sanche L Radiat Environ Biophys; 2003 Oct; 42(3):201-11. PubMed ID: 14523567 [TBL] [Abstract][Full Text] [Related]
36. A classical and semiclassical study of collisions between X Illescas C; Lombana MA; Méndez L; Rabadán I; Suárez J Phys Chem Chem Phys; 2020 Sep; 22(35):19573-19584. PubMed ID: 32852017 [TBL] [Abstract][Full Text] [Related]
37. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak. González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751 [TBL] [Abstract][Full Text] [Related]
38. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system. Stewart RD; Wilson WE; McDonald JC; Strom DJ Phys Med Biol; 2002 Jan; 47(1):79-88. PubMed ID: 11814229 [TBL] [Abstract][Full Text] [Related]
39. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy. Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991 [TBL] [Abstract][Full Text] [Related]
40. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]