These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 31487913)

  • 1. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering.
    Saberi A; Jabbari F; Zarrintaj P; Saeb MR; Mozafari M
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31487913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering.
    Vandghanooni S; Eskandani M
    Int J Biol Macromol; 2019 Dec; 141():636-662. PubMed ID: 31494165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering.
    Mousavi A; Vahdat S; Baheiraei N; Razavi M; Norahan MH; Baharvand H
    ACS Biomater Sci Eng; 2021 Jan; 7(1):55-82. PubMed ID: 33320525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically conductive materials for in vitro cardiac microtissue engineering.
    Baei P; Hosseini M; Baharvand H; Pahlavan S
    J Biomed Mater Res A; 2020 May; 108(5):1203-1213. PubMed ID: 32034936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.
    Schöbel L; Boccaccini AR
    Acta Biomater; 2023 Oct; 169():45-65. PubMed ID: 37532132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural polypeptides-based electrically conductive biomaterials for tissue engineering.
    Vandghanooni S; Eskandani M
    Int J Biol Macromol; 2020 Mar; 147():706-733. PubMed ID: 31923500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers.
    Nada AA; Eckstein Andicsová A; Mosnáček J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives.
    Marsudi MA; Ariski RT; Wibowo A; Cooper G; Barlian A; Rachmantyo R; Bartolo PJDS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive biomaterials for muscle tissue engineering.
    Dong R; Ma PX; Guo B
    Biomaterials; 2020 Jan; 229():119584. PubMed ID: 31704468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically conductive nanomaterials for cardiac tissue engineering.
    Ashtari K; Nazari H; Ko H; Tebon P; Akhshik M; Akbari M; Alhosseini SN; Mozafari M; Mehravi B; Soleimani M; Ardehali R; Ebrahimi Warkiani M; Ahadian S; Khademhosseini A
    Adv Drug Deliv Rev; 2019 Apr; 144():162-179. PubMed ID: 31176755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair.
    Lee M; Kim MC; Lee JY
    Int J Nanomedicine; 2022; 17():6181-6200. PubMed ID: 36531116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration.
    Morsink M; Severino P; Luna-Ceron E; Hussain MA; Sobahi N; Shin SR
    Acta Biomater; 2022 Feb; 139():141-156. PubMed ID: 34818579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues.
    Navaei A; Rahmani Eliato K; Ros R; Migrino RQ; Willis BC; Nikkhah M
    Biomater Sci; 2019 Jan; 7(2):585-595. PubMed ID: 30426116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectricity-coupling patches for repairing impaired myocardium.
    Li Y; Qiu X
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jul; 14(4):e1787. PubMed ID: 35233963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroconductive biomaterials for cardiac tissue engineering.
    Esmaeili H; Patino-Guerrero A; Hasany M; Ansari MO; Memic A; Dolatshahi-Pirouz A; Nikkhah M
    Acta Biomater; 2022 Feb; 139():118-140. PubMed ID: 34455109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable bioelectronics for biomedical applications.
    Lee S; M Silva S; Caballero Aguilar LM; Eom T; Moulton SE; Shim BS
    J Mater Chem B; 2022 Nov; 10(42):8575-8595. PubMed ID: 36214325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications.
    Hu X; Ricci S; Naranjo S; Hill Z; Gawason P
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.