These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31487944)

  • 1. Fluorine-Substituted Arylphosphine for an NHC-Ni(I) System, Air-Stable in a Solid State but Catalytically Active in Solution.
    Matsubara K; Fujii T; Hosokawa R; Inatomi T; Yamada Y; Koga Y
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency of cavity-based triaryl-phosphines in nickel-catalysed Kumada-Tamao-Corriu cross-coupling.
    Monnereau L; Sémeril D; Matt D
    Chem Commun (Camb); 2011 Jun; 47(23):6626-8. PubMed ID: 21544285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, mechanism of formation, and catalytic activity of Xantphos nickel π-complexes.
    Staudaher ND; Stolley RM; Louie J
    Chem Commun (Camb); 2014 Dec; 50(98):15577-80. PubMed ID: 25356514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient aryl-(hetero)aryl coupling by activation of C-Cl and C-F bonds using nickel complexes of air-stable phosphine oxides.
    Ackermann L; Born R; Spatz JH; Meyer D
    Angew Chem Int Ed Engl; 2005 Nov; 44(44):7216-9. PubMed ID: 16229046
    [No Abstract]   [Full Text] [Related]  

  • 5. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C-N Cross-Coupling.
    Liu RY; Dennis JM; Buchwald SL
    J Am Chem Soc; 2020 Mar; 142(9):4500-4507. PubMed ID: 32040909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphenyl-based diaminophosphine oxides as air-stable preligands for the nickel-catalyzed Kumada-Tamao-Corriu coupling of deactivated aryl chlorides, fluorides, and tosylates.
    Jin Z; Li YJ; Ma YQ; Qiu LL; Fang JX
    Chemistry; 2012 Jan; 18(2):446-50. PubMed ID: 22161862
    [No Abstract]   [Full Text] [Related]  

  • 7. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.
    Sun AD; Leung K; Restivo AD; LaBerge NA; Takasaki H; Love JA
    Chemistry; 2014 Mar; 20(11):3162-8. PubMed ID: 24522982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures.
    Schilter D; Rauchfuss TB; Stein M
    Inorg Chem; 2012 Aug; 51(16):8931-41. PubMed ID: 22838645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nickel phosphine complex as a fast and efficient hydrogen production catalyst.
    Gan L; Groy TL; Tarakeshwar P; Mazinani SK; Shearer J; Mujica V; Jones AK
    J Am Chem Soc; 2015 Jan; 137(3):1109-15. PubMed ID: 25562523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH
    J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.
    Takaichi J; Morimoto Y; Ohkubo K; Shimokawa C; Hojo T; Mori S; Asahara H; Sugimoto H; Fujieda N; Nishiwaki N; Fukuzumi S; Itoh S
    Inorg Chem; 2014 Jun; 53(12):6159-69. PubMed ID: 24884152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust nickel catalyst for cyanomethylation of aldehydes: activation of acetonitrile under base-free conditions.
    Chakraborty S; Patel YJ; Krause JA; Guan H
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7523-6. PubMed ID: 23761321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-iminophosphine-catalyzed [4+2] cycloaddition of enones with allenes: synthesis of highly substituted dihydropyrans.
    Sako S; Kurahashi T; Matsubara S
    Chem Commun (Camb); 2011 Jun; 47(21):6150-2. PubMed ID: 21519613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular, air-stable nickel precatalyst.
    Shields JD; Gray EE; Doyle AG
    Org Lett; 2015 May; 17(9):2166-9. PubMed ID: 25886092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous hydrogenation and isomerization of 1-octene catalyzed by nickel(II) complexes with bidentate diarylphosphane ligands.
    Mooibroek TJ; Wenker EC; Smit W; Mutikainen I; Lutz M; Bouwman E
    Inorg Chem; 2013 Jul; 52(14):8190-201. PubMed ID: 23822166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kumada-Corriu cross-couplings with 2-pyridyl Grignard reagents.
    Ackermann L; Potukuchi HK; Kapdi AR; Schulzke C
    Chemistry; 2010 Mar; 16(11):3300-3. PubMed ID: 20169601
    [No Abstract]   [Full Text] [Related]  

  • 17. Solvent-dependent reversible ligand exchange in nickel complexes of a monosulfide bis(diphenylphosphino)(N-thioether)amine.
    Ghisolfi A; Fliedel C; Rosa V; Pattacini R; Thibon A; Monakhov KY; Braunstein P
    Chem Asian J; 2013 Aug; 8(8):1795-805. PubMed ID: 23794386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and structural determination of some nickel(II) complexes containing imido Schiff bases and substituted phosphine ligands.
    Kianfar AH; Ebrahimi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():725-9. PubMed ID: 23892113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct synthesis of cis-dihalido-bis(NHC) complex of nickel(II) and catalytic application in olefin addition polymerization: effect of halogen co-ligands and density functional theory study.
    Zhang D; Zhou S; Li Z; Wang Q; Weng L
    Dalton Trans; 2013 Sep; 42(33):12020-30. PubMed ID: 23838704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.
    Balamurugan M; Mayilmurugan R; Suresh E; Palaniandavar M
    Dalton Trans; 2011 Oct; 40(37):9413-24. PubMed ID: 21850329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.